EMAIL THIS PAGE TO A FRIEND

Analytical and bioanalytical chemistry

Bio-generation of stable isotope-labeled internal standards for absolute and relative quantitation of phase II drug metabolites in plasma samples using LC-MS/MS.


PMID 25804729

Abstract

Quantification of drug metabolites in biological samples has been of great interest in current pharmaceutical research, since metabolite concentrations and pharmacokinetics can contribute to a better understanding of the toxicity of drug candidates. Two major categories of Phase II metabolites, glucuronide conjugates and glutathione conjugates, may cause significant drug toxicity and therefore require close monitoring at early stages of drug development. In order to achieve high precision, accuracy, and robustness, stable isotope-labeled (SIL) internal standards (IS) are widely used in quantitative bioanalytical methods using liquid chromatography and tandem mass spectrometry (LC-MS/MS), due to their capability of compensating for matrix effects, extraction variations and instrument response fluctuations. However, chemical synthesis of SIL analogues of Phase II metabolites can often be very difficult and require extensive exploratory research, leading to higher cost and significant delays in drug research and development. To overcome these challenges, we have developed a generic method which can synthesize SIL analogues of Phase II metabolites from more available SIL parent drugs or SIL conjugation co-factors, using in vitro biotransformation. This methodology was successfully applied to the bio-generation of SIL glucuronide conjugates and glutathione conjugates. The method demonstrated satisfactory performance in both absolute quantitation and assessment of relative exposure coverage across species in safety tests of drug metabolites (MIST). This generic technique can be utilized as an alternative to chemical synthesis and potentially save time and cost for drug research and development.

Related Materials