Scientific reports

Metabolic profiling-based data-mining for an effective chemical combination to induce apoptosis of cancer cells.

PMID 25824377


Green tea extract (GTE) induces apoptosis of cancer cells without adversely affecting normal cells. Several clinical trials reported that GTE was well tolerated and had potential anti-cancer efficacy. Epigallocatechin-3-O-gallate (EGCG) is the primary compound responsible for the anti-cancer effect of GTE; however, the effect of EGCG alone is limited. To identify GTE compounds capable of potentiating EGCG bioactivity, we performed metabolic profiling of 43 green tea cultivar panels by liquid chromatography-mass spectrometry (LC-MS). Here, we revealed the polyphenol eriodictyol significantly potentiated apoptosis induction by EGCG in vitro and in a mouse tumour model by amplifying EGCG-induced activation of the 67-kDa laminin receptor (67LR)/protein kinase B/endothelial nitric oxide synthase/protein kinase C delta/acid sphingomyelinase signalling pathway. Our results show that metabolic profiling is an effective chemical-mining approach for identifying botanical drugs with therapeutic potential against multiple myeloma. Metabolic profiling-based data mining could be an efficient strategy for screening additional bioactive compounds and identifying effective chemical combinations.