EMAIL THIS PAGE TO A FRIEND

European journal of medicinal chemistry

Design, synthesis, biological evaluation and preliminary mechanism study of novel benzothiazole derivatives bearing indole-based moiety as potent antitumor agents.


PMID 25874341

Abstract

Through a structure-based molecular hybridization approach, a series of novel benzothiazole derivatives bearing indole-based moiety were designed, synthesized and screened for in vitro antitumor activity against four cancer cell lines (HT29, H460, A549 and MDA-MB-231). Most of them showed moderate to excellent activity against all the tested cell lines. Among them, compounds 20a-w with substituted benzyl-1H-indole moiety showed better selectivity against HT29 cancer cell line than other compounds. Compound 20d exhibited excellent antitumor activity with IC50 values of 0.024, 0.29, 0.84 and 0.88 μM against HT29, H460, A549 and MDA-MB-231, respectively. Further mechanism studies indicated that the marked pharmacological activity of compound 20d might be ascribed to activation of procaspase-3 (apoptosis-inducing) and cell cycle arrest, which had emerged as a lead for further structural modifications. Furthermore, 3D-QSAR model (training set: q(2) = 0.850, r(2) = 0.987, test set: r(2) = 0.811) was built to provide a comprehensive guide for further structural modification and optimization.