Applied and environmental microbiology

Dynamic Response of Mycobacterium vanbaalenii PYR-1 to BP Deepwater Horizon Crude Oil.

PMID 25888169


We investigated the response of the hydrocarbon-degrading Mycobacterium vanbaalenii PYR-1 to crude oil from the BP Deepwater Horizon (DWH) spill, using substrate depletion, genomic, and proteome analyses. M. vanbaalenii PYR-1 cultures were incubated with BP DWH crude oil, and proteomes and degradation of alkanes and polycyclic aromatic hydrocarbons (PAHs) were analyzed at four time points over 30 days. Gas chromatography-mass spectrometry (GC-MS) analysis showed a chain length-dependent pattern of alkane degradation, with C12 and C13 being degraded at the highest rate, although alkanes up to C28 were degraded. Whereas phenanthrene and pyrene were completely degraded, a significantly smaller amount of fluoranthene was degraded. Proteome analysis identified 3,948 proteins, with 876 and 1,859 proteins up- and downregulated, respectively. We observed dynamic changes in protein expression during BP crude oil incubation, including transcriptional factors and transporters potentially involved in adaptation to crude oil. The proteome also provided a molecular basis for the metabolism of the aliphatic and aromatic hydrocarbon components in the BP DWH crude oil, which included upregulation of AlkB alkane hydroxylase and an expression pattern of PAH-metabolizing enzymes different from those in previous proteome expression studies of strain PYR-1 incubated with pure or mixed PAHs, particularly the ring-hydroxylating oxygenase (RHO) responsible for the initial oxidation of aromatic hydrocarbons. Based on these results, a comprehensive cellular response of M. vanbaalenii PYR-1 to BP crude oil was proposed. This study increases our fundamental understanding of the impact of crude oil on the cellular response of bacteria and provides data needed for development of practical bioremediation applications.