EMAIL THIS PAGE TO A FRIEND

Vox sanguinis

Duffy blood group phenotype-genotype correlations using high-resolution melting analysis PCR and microarray reveal complex cases including a new null FY*A allele: the role for sequencing in genotyping algorithms.


PMID 25900316

Abstract

Duffy blood group phenotypes can be predicted by genotyping for single nucleotide polymorphisms (SNPs) responsible for the Fy(a) /Fy(b) polymorphism, for weak Fy(b) antigen, and for the red cell null Fy(a-b-) phenotype. This study correlates Duffy phenotype predictions with serotyping to assess the most reliable procedure for typing. Samples, n = 155 (135 donors and 20 patients), were genotyped by high-resolution melt PCR and by microarray. Samples were in three serology groups: 1) Duffy patterns expected n = 79, 2) weak and equivocal Fy(b) patterns n = 29 and 3) Fy(a-b-) n = 47 (one with anti-Fy3 antibody). Discrepancies were observed for five samples. For two, SNP genotyping predicted weak Fy(b) expression discrepant with Fy(b-) (Group 1 and 3). For three, SNP genotyping predicted Fy(a) , discrepant with Fy(a-b-) (Group 3). DNA sequencing identified silencing mutations in these FY*A alleles. One was a novel FY*A 719delG. One, the sample with the anti-Fy3, was homozygous for a 14-bp deletion (FY*01N.02); a true null. Both the high-resolution melting analysis and SNP microarray assays were concordant and showed genotyping, as well as phenotyping, is essential to ensure 100% accuracy for Duffy blood group assignments. Sequencing is important to resolve phenotype/genotype conflicts which here identified alleles, one novel, that carry silencing mutations. The risk of alloimmunisation may be dependent on this zygosity status.