EMAIL THIS PAGE TO A FRIEND

Digestive diseases and sciences

The Effect of Ischemia and Reperfusion on Enteric Glial Cells and Contractile Activity in the Ileum.


PMID 25917048

Abstract

We investigated the effects of ischemia followed by different periods of reperfusion (I/R) on immunoreactive S100β-positive glial and Hu-immunoreactive neurons co-expressing the P2X2 receptor in the myenteric plexus of the rat ileum. The ileal artery was occluded for 35 min with an atraumatic vascular clamp. The animals were killed 24 h, 72 h, and 1 week after ischemia. Sham animals were not submitted to ileal artery occlusion. The relative density, size, and co-localization of P2X2 receptor-expressing cells in relation to S100β-immunoreactive glial and Hu-immunoreactive neuronal cells were evaluated. Additionally, we analyzed the effects of I/R on gastrointestinal transit and ileum contractile activity. The cellular density of P2X2 receptor and neuronal Hu immunoreactivity/cm(2) decreased after I/R, whereas glial S100β immunoreactivity/cm(2) increased. No significant differences between sham and I/R groups were observed regarding the perikarya area of Hu-positive neurons. The area of S100β-immunoreactive glial cells increased by 24.1 % 1 week after I/R compared with the 24 h group. Methylene blue progression along the small intestine decreased (P < 0.05) from 24.5 ± 2.3 % in the sham group to 17.2 ± 2.0 % 1 week post-ischemia. We noted a significant (P < 0.05) decrease in the maximal contraction amplitude triggered by electrical field stimulation in the presence of ATP in preparations submitted to 24 h of I/R. Changes in the P2X2 receptor density parallel myenteric neuronal loss following I/R of the rat ileum. This, together with the increase in the activated (oversized) glial cells, may contribute to decreased GI motility after I/R.