EMAIL THIS PAGE TO A FRIEND

Applied microbiology and biotechnology

Engineered biosynthesis of pimaricin derivatives with improved antifungal activity and reduced cytotoxicity.


PMID 25952111

Abstract

Pimaricin is an important antifungal antibiotic for antifungal therapy and prevention of mould contamination in the food industry. In this study, three new pimaricin derivatives, 12-decarboxy-12-methyl pimaricin (1), 4,5-desepoxy-12-decarboxy-12-methyl pimaricin (2), and 2-hydro-3-hydroxy-4,5-desepoxy-12-decarboxy-12-methyl pimaricin (3), were generated through the inactivation of P450 monooxygenase gene scnG in Streptomyces chattanoogensis L10. Compared with pimaricin, 1 displayed a twofold increase in antifungal activity against Candida albicans ATCC 14053 and a 4.5-fold decrease in cytotoxicity with erythrocytes, and 2 had comparable antifungal activity and reduced cytotoxicity, whereas 3 showed nearly no antifungal and hemolytic activities. Genetic and biochemical analyses proved that 1 is converted from 2 by P450 monooxygenase ScnD. Therefore, the overexpression of scnD in scnG-null strain eliminated the accumulation of 2 and improved the yield of 1 by 20 %. Conversely, scnG/scnD double mutation abolished the production of 1 and improved the yield of 2 to 2.3-fold. These results indicate that the pimaricin derivatives with improved pharmacological properties obtained by genetic engineering can be further developed into antifungal agents for potential clinical application.

Related Materials