EMAIL THIS PAGE TO A FRIEND

Toxicology in vitro : an international journal published in association with BIBRA

T-2 toxin inhibits gene expression and activity of key steroidogenesis enzymes in mouse Leydig cells.


PMID 25962641

Abstract

T-2 toxin is one of the mycotoxins, a group of type A trichothecenes produced by several fungal genera including Fusarium species, which may lead to the decrease of the testosterone secretion in the primary Leydig cells derived from the mouse testis. The previous study demonstrated the effects of T-2 toxin through direct decrease of the testosterone biosynthesis in the primary Leydig cells derived from the mouse testis. In this study, we further examined the direct biological effects of T-2 toxin on steroidogenesis production, primarily in Leydig cells of mice. Mature mouse Leydig cells were purified by Percoll gradient centrifugation and the cell purity was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining. To examine T-2 toxin-induced testosterone secretion decrease, we measured the transcription levels of 3 key steroidogenic enzymes and 5 enzyme activities including 3β-HSD-1, P450scc, StAR, CYP17A1, and 17β-HSD in T-2 toxin/human chorionicgonadotropin (hCG) co-treated cells. Our previous study showed that T-2 toxin (10(-7) M, 10(-8) M and 10(-9) M) significantly suppressed hCG (10 ng/ml)-induced testosterone secretion. The studies demonstrated that the suppressive effect is correlated with the decreases in the levels of transcription of 3β-HSD-1, P450scc, and StAR (P<0.05) and also in enzyme activities of 3β-HSD-1, P450scc, StAR, CYP17A1, and 17β-HSD (P<0.05).