Journal of leukocyte biology

Inflammatory environment and oxidized LDL convert circulating human proangiogenic cells into functional antigen-presenting cells.

PMID 25990243


The function of human circulating PACs has been described extensively. However, little focus has been placed on understanding how these cells differ in their functions in the presence of microenvironments mimicking vascular inflammation. We hypothesized that exposure to proinflammatory cytokines or the oxLDL, an autoantigen abundant in advanced atherosclerotic plaques, converts PACs into immune-modulating/proinflammatory cells. Hence, we examined the effect of oxLDL and inflammatory stimuli on their phenotype by use of a functional genomics model based on secretome and whole genome transcriptome profiling. PACs obtained from culturing a PBMC fraction in angiogenic medium were primed with DC differentiation cytokines and then exposed to proinflammatory cytokines or oxLDL. Under these conditions, PACs converted into APCs, expressed maturation markers CD80 and CD83, and showed an increased up-regulation of CD86. APCcy and APCox induced a robust T cell BrdU incorporation. Despite a similar ability to induce lymphocyte proliferation, APCcy and APCox differed for the secretory pathway and mRNA expression. Analysis of the differentially expressed genes identified 4 gene "clusters," showing reciprocal modulation in APCcy vs. APCox, justifying, according to functional genomics analyses, a different putative function of the cells in antigen processing. Together, these data show that treatment with inflammatory cytokines or oxLDL converts human PAC phenotypes and functions into that of APCs with similar lymphocyte-activating ability but distinct maturation degree and paracrine functions.