EMAIL THIS PAGE TO A FRIEND

Journal of animal science

Nutritional plane of twin-bearing ewes alters fetal mammary gland biochemical composition and mTOR/MAPK pathway signaling.


PMID 26020751

Abstract

Identifying the biochemical changes and molecular pathways that regulate fetal mammary development in response to maternal nutrition is important for understanding the link between fetal programming of mammary development and future lactation performance. Although there are published studies regarding biochemical changes in the developing mammary gland, there are currently no data on molecular pathway involvement in regulating ruminant fetal mammary development. This study investigated changes in fetal mammary biochemical indices and mechanistic target of rapamycin (mTOR)/mitogen activated protein kinase (MAPK) signaling at d 100 and 140 of gestation in an ovine model of restricted maternal nutrition. Ewes were randomly allocated to ad libitum (A) or maintenance (M) nutritional regimens, under New Zealand pastoral grazing conditions, from d 21 to 140 of pregnancy. At d 100 and 140 of pregnancy, a subgroup of twin-bearing dams was euthanized, and whole fetal mammary glands (fiber, skin, fat, and ducts) were collected. Mammary glands of fetuses carried by M-fed dams were heavier at d 100 than those of fetuses carried by A-fed dams ( = 0.03), with no difference in the abundance of mTOR/MAPK signaling proteins observed. At d 140, mammary glands of fetuses carried by M-fed dams were lighter ( = 0.07) than fetuses carried by A-fed dams because of decreased hyperplasia ( = 0.04) and hypertrophy ( = 0.09) but had increased protein synthetic capacity ( = 0.02). Increased protein synthetic capacity was associated with increased abundance of MAPK pathway signaling proteins eukaryotic intiation factor 4E (eIF4E)/eIF4E and mTOR pathway signaling proteins eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/4E-BP1 and ribosomal protein S6 (RPS6)/RPS6 ( ≤ 0.05). Increased abundance of MAPK/mTOR pathway proteins is proposed to mediate increased protein synthetic capacity via ribosome biogenesis and the availability of factors required to initiate protein translation. The primary regulator of 4E-BP1 phosphorylation at Ser65 and RPS6 at Ser235/236 is the activated form of mTOR: mTOR. To study potential tissue-specific mTOR, mTOR abundance mammary glands, separated into parenchyma and fat pad, were collected from d 140 fetuses carried by dams fed a lucerne-based pellet diet formulated to meet 100% of the NRC-recommended maintenance requirements. Results showed that the abundance of mTOR was primarily localized to the fat pad, indicating that the fat pad plays a potential role in regulating development of the fetal mammary gland.