EMAIL THIS PAGE TO A FRIEND

Chinese medical journal

Protective effects of salubrinal on liver injury in rat models of brain death.


PMID 26021511

Abstract

Previous studies have indicated that endoplasmic reticulum stress participates in and mediates liver injury and apoptosis in brain-dead (BD) rats. In this study, we observed the effect of salubrinal (Sal, Sigma, USA) on liver cells in BD rats and explored its relevant mechanisms. Thirty Sprague-Dawley rats were equally randomized into three groups: BD group, Sal group, and DMSO group. The BD models were established by increasing intracranial pressure in a modified, slow, and intermittent way. In the drug groups, Sal was administered 1 h before the induction of BD. After modeling was completed, the blood and liver samples were harvested. CHOP and Caspase-12 mRNA expression was detected using quantitative polymerase chain reaction. PKR-like ER kinase (PERK), P-eukaryotic translation initiation factor 2α (eIF2α), eIF2α, CHOP and caspase-12 expression was detected using western blotting (WB). CHOP and caspase-12 distribution and expression in liver tissues were determined using immunohistochemistry (IHC). Alanine aminotransferase and aspartate aminotransferase level were detected using an automatic biochemical analyzer. Hepatic cell apoptosis was detected using TUNEL. The results were analyzed using Quantity-one v4.62 software (Bio-Rad, USA). CHOP and caspase-12 expression and PERK, eIF2α, and P-eIF2α protein expression showed no significant difference between BD group and DMSO group. Compared with BD group, Sal group had a significantly higher P-eIF2C level and a lower P-PERK level 2 h and 6 h after BD (P < 0.05). However, eIF2α expression showed no significant difference (P > 0.05). After the Sal treatment, CHOP and caspase-12 mRNA expression significantly decreased 4 h after BD (P < 0.05). WB and IHC indicated that CHOP and caspase-12 expression also significantly decreased after Sal treatment. Sal was associated with improved liver function and decreased hepatic cell apoptosis. Sal can significantly reduce apoptosis in hepatic cells of BD rats. This protective effect may be achieved via the PERK-eIF2α signaling pathway.