EMAIL THIS PAGE TO A FRIEND

Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society

Ghrelin enhancer, rikkunshito, improves postprandial gastric motor dysfunction in an experimental stress model.


PMID 26088415

Abstract

Functional dyspepsia (FD) is one of the most common disorders of gastrointestinal (GI) diseases. However, no curable treatment is available for FD because the detailed mechanism of GI dysfunction in stressed conditions remains unclear. We aimed to clarify the association between endogenous acylated ghrelin signaling and gastric motor dysfunction and explore the possibility of a drug with ghrelin signal-enhancing action for FD treatment. Solid gastric emptying (GE) and plasma acylated ghrelin levels were evaluated in an urocortin1 (UCN1) -induced stress model. To clarify the role of acylated ghrelin on GI dysfunction in the model, exogenous acylated ghrelin, an endogenous ghrelin enhancer, rikkunshito, or an α2 -adrenergic receptor (AR) antagonist was administered. Postprandial motor function was investigated using a strain gauge force transducer in a free-moving condition. Exogenous acylated ghrelin supplementation restored UCN1-induced delayed GE. Alpha2 -AR antagonist and rikkunshito inhibited the reduction in plasma acylated ghrelin and GE in the stress model. The action of rikkunshito on delayed GE was blocked by co-administration of the ghrelin receptor antagonist. UCN1 decreased the amplitude of contraction in the antrum while increasing it in the duodenum. The motility index of the antrum but not the duodenum was significantly reduced by UCN1 treatment, which was improved by acylated ghrelin or rikkunshito. The UCN1-induced gastric motility dysfunction was mediated by abnormal acylated ghrelin dynamics. Supplementation of exogenous acylated ghrelin or enhancement of endogenous acylated ghrelin secretion by rikkunshito may be effective in treating functional GI disorders.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

Y3125
Yohimbine hydrochloride, ≥98% (TLC), powder
C21H26N2O3 · HCl