EMAIL THIS PAGE TO A FRIEND

Journal of colloid and interface science

Kinetic model and thermodynamic study of Acid Red 1 entrapment at electropolymerised polypyrrole films.


PMID 26183343

Abstract

This work is focussed on the determination of a kinetic model and the thermodynamic study of the electrochemical entrapment of the model azo dye, Acid Red 1, at conducting polypyrrole films, which is proposed as a potential green technology for treatment of azo dyes in industrial effluents. The entrapment kinetic data were found to follow a pseudosecond order model involving an intra-particle diffusion. However, the equilibrium data obtained for Acid Red 1 entrapment at polypyrrole did not obey any common surface adsorption models such as the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. Accordingly, the entrapment process may lead to an enhanced quantity of dye embedded in a polypyrrole film, making it a more effective and efficient technology than those involving only adsorption. Similarly, dye leakage from polypyrrole film surface to a sample matrix will be easily prevented. For this treatment process, a negative ΔG° range between -1.46±0.78 and -2.94±0.24 kJ mol(-1) at the corresponding temperature range of 298-318 K, and a ΔH° of 20.5±2.5 kJ mol(-1) indicate a spontaneous and endothermic entrapment process. Also, a positive ΔS° (73.6±8.2 J mol(-1) K(-1)) reveals increased randomness of the interface and an affinity of Acid Red 1 towards polypyrrole films. A low activation energy (7.67±0.80 kJ mol(-1)) confirms a physical process for Acid Red 1 entrapment at polypyrrole films.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

W338605
Pyrrole, ≥98%, FCC, FG
C4H5N
131709
Pyrrole, reagent grade, 98%
C4H5N