EMAIL THIS PAGE TO A FRIEND

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

Moderate Hypoxia Down-Regulates Interleukin-6 Secretion and TLR4 Expression in Human Sw.71 Placental Cells.


PMID 26279422

Abstract

The placenta is a vital organ for pregnancy. Many in vitro placental experiments are conducted under 21% O2; however, O2 tension could influence cellular functions, including cytokine secretion. We investigated the effects of oxygen tension between moderate hypoxia (5% O2) and normoxia (21% O2) by testing the hypothesis that moderate hypoxia regulates cellular phenotypes differently from normoxia in human trophoblast cells. Sw.71 trophoblast cells were incubated under normoxic or moderately hypoxic conditions. Cells were also treated with lipopolysaccharide (LPS) as a Toll-like receptor 4 (TLR4) ligand inducing inflammation. Interleukin-6 (IL-6) as an inflammatory cytokine was determined, and TLR4, hypoxia-induced factor-1α (HIF1α), and reactive oxygen species (ROS) production were detected. Moderate hypoxia increased HIF1α expression and cell proliferation and acted by two different mechanisms to decrease IL-6 secretion compared with normoxia: it limits the TLR4 expression and ROS production. Treatment with cobalt chloride as an HIF1 activator inhibited IL-6 secretion and TLR4 expression; this effect was reversed on treatment with PX-12 as an HIF1 suppressor. IL-6 secretion, TLR4 expression, and ROS production, classical markers of inflammation, are down-regulated by moderate hypoxia, and HIF1α and ROS have a potential to regulate these responses in human trophoblast cells.