Journal of applied toxicology : JAT

Evaluation of uptake, cytotoxicity and inflammatory effects in respiratory cells exposed to pristine and -OH and -COOH functionalized multi-wall carbon nanotubes.

PMID 26370214


Toxic effects were reported for pristine-multi-wall carbon nanotubes (p-MWCNTs) while the role of the functionalization on MWCNT-induced toxicity is not yet well defined. We evaluated on human alveolar (A549) epithelial cells and normal bronchial (BEAS-2B) cells exposed to p-MWCNTs, MWCNTs-OH and MWCNTs-COOH: uptake by TEM, cell viability by different assays, membrane damage by the LDH assay and cytokine release by ELISA. The aims of the present study were to: (i) confirm MWCNT cytotoxicity mechanisms hypothesized in our previous studies; (ii) identify the most reliable viability assay to screen MWCNT toxicity; and (iii) to test our model to clarify the role of functionalization on MWCNT-induced toxicity. In A549 cells, p-MWCNTs and MWCNTs-OH were localized free in the cytoplasm and inside vacuoles whereas MWCNTs-COOH were confined inside filled cytoplasmic vesicles. WST-1 and Trypan blue assays showed in A549 cells a similar slight viability reduction for all MWCNTs whereas in BEAS-2B cells WST1 showed a high viability reduction at the highest concentrations, particularly for MWCNTs-COOH. The MTT assay showed a false cytotoxicity as a result of MWCNTs-interference. Pristine and MWCNTs-COOH induced membrane damage, particularly in BEAS-2B cells. MWCNTs-COOH induced interleukin-6 (IL-6) and IL-8 release in A549 cells whereas p-MWCNTs induced IL-8 release in BEAS-2B cells. MWCNTs intracellular localization in A549 cells confirms the toxicity mechanisms previously hypothesized, with p-MWCNTs disrupting the membrane and vesicle-confined MWCNTs-COOH inducing inflammation. WST-1 was more reliable than MTT to test MWCNT-toxicity. BEAS-2B cells were more susceptible then A549 cells, particularly to MWCNT-COOH cytotoxicity. Our results confirm the toxicity of p-MWCNTs and demonstrate, also for the two kinds of tested functionalized MWCNTs toxic effects with a different mechanism of action.