EMAIL THIS PAGE TO A FRIEND

Applied biochemistry and biotechnology

In situ immobilized lipase on the surface of intracellular polyhydroxybutyrate granules: preparation, characterization, and its promising use for the synthesis of fatty acid alkyl esters.


PMID 26378013

Abstract

Photobacterium lipolyticum M37 lipase (LipM37) was immobilized on the surface of intracellular polyhydroxybutyrate (PHB) granules in Escherichia coli. LipM37 was genetically fused to Cupriavidus necator PHA synthase (PhaC Cn ), and the engineered PHB operon containing the lip M37 -phaC Cn successfully mediated the accumulation of PHB granules (85 wt.%) inside E. coli cells. The PHB granules were isolated from the crude cell extract, and the immobilized LipM37 was comparable with the free form of LipM37 except for a favorable increase in thermostability. The immobilized LipM37 was used to synthesize oleic acid methyl ester (biodiesel) and oleic acid dodecyl ester (wax ester), and yielded 98.0 % conversion in esterification of oleic acid and dodecanol. It was suggested that the LipM37-PhaCCn fusion protein successfully exhibited bifunctional activities in E. coli and that in situ immobilization of lipase to the intracellular PHB could be a promising approach for expanding the biocatalytic toolbox for industrial chemical synthesis.