Diagnostic pathology

Protective role of silymarin in a mouse model of renal Ischemia-Reperfusion injury.

PMID 26521234


We investigated the mechanism of action of silymarin in a mouse model of renal ischemia-reperfusion injury (I/R) to ascertain its role in the treatment of I/R injury. Twenty-four C57BL/6 male mice were divided randomly into three groups: control (sham); ischemia-reperfusion (I/R); silymarin + ischemia-reperfusion (silymarin + I/R). In sham mice, an abdominal incision was made, followed by dissection of the bilateral renal pedicle, with no further cross-clamping of arteries. Silymarin + I/R mice were administered 100 mg/kg silymarin daily for 7 consecutive days before surgery, whereas I/R mice were administered (i.g.) 0.9 % saline + 0.1 % (v/v) ethanol daily for 7 consecutive days before surgery. Silymarin + I/R and I/R mice were subjected to renal ischemia to induce acute kidney injury after 45-min clamping of bilateral renal arteries. Serum levels of creatinine and blood urea nitrogen levels were measured. Periodic acid-Schiff (PAS) staining was undertaken to detect damaged renal tissue. Myeloperoxidase (MPO) activity and immunofluorescent detection of CD68 expression was undertaken for each group. Levels of inflammatory cytokines secreted by renal tissue were monitored by ELISA. Apoptosis was detected by TUNEL staining. Expression of cleaved-caspase-3, Bcl-2 and Bax was detected by western blotting. Serum creatinine and blood urea nitrogen levels were elevated in silymarin + I/R and I/R groups compared with sham mice (p < 0.05), whereas those in the I/R group were significantly higher than in the silymarin + I/R group (p < 0.05). Number of damaged renal tubule cells and apoptotic cells in sham and silymarin + I/R groups was significantly lower than in I/R mice. MPO activity and secretion of inflammatory cytokines in silymarin + I/R and I/R groups was reduced (p < 0.05), and CD68 expression in silymarin + I/R mice was lower than in I/R mice (p < 0.05). Expression of cleaved-caspase-3 and Bax in the I/R group was significantly higher than in sham mice, whereas Bcl-2 expression was lower than in silymarin + I/R mice (p < 0.05). Silymarin can inhibit renal I/R injury by inhibiting release of inflammatory factors and regulating apoptosis.