EMAIL THIS PAGE TO A FRIEND

Poultry science

Effect of insoluble fiber supplementation applied at different ages on digestive organ weight and digestive enzymes of layer-strain poultry.


PMID 26574026

Abstract

Two experiments were conducted to study effects of dietary insoluble fiber (IF) on digestive enzyme function in layer poultry. In Experiment 1, 8 wk old pullets were fed a control diet (Group C) or a diet (Group IF) supplemented with 1% IF (Arbocel RC). After 5 wk, 6 pullets per group were killed and organ samples collected. The remaining pullets in Group C were divided into two groups: half were fed the control diet (Group C) and half were given the IF diet (Group C-IF). Similarly, half the pullets in Group IF continued on the IF diet (Group IF) and half on the control diet (Group IF-C). At 10 wk, organ samples were collected. BW at wk 5 (IF, 1364.8 g; C, 1342.9 g) and 10 wk (IF, 1678.1 g; IF-C, 1630.5 g; C-IF, 1617.1 g; C, 1580.4 g) were not different. At wk 5, the relative proventricular weight (0.41 g/100 g BW) and activities of pepsin (75.3 pepsin units/g proventriculus/min) and pancreatic general proteolytic activity (GP) (122.9 μmol tyrosine produced/g tissue) were greater (P < 0.05) than those of Group C (proventricular relative weight, 0.36; pepsin activity, 70.6; GP activity, 94.3). At wk 10, relative weights of liver and gizzard of Group IF were heavier (P < 0.05) than other treatments; activities of pepsin, GP, trypsin and chymotrypsin of IF pullets were significantly greater than other treatments as was mRNA expression for pepsinogens A (25.9 vs. 22.9) and C (13.1 vs. 10.8). In Experiment 2, 19 wk old hens were fed a control diet or a diet containing 0.8% IF (Arbocel RC) for 12 wk. Final BW after 12 wk was not different (IF, 1919.4 g; C, 1902.1 g). Pancreatic GP activity was greater (P < 0.05) in Group IF hens than Group C at wk 12 (122.2 vs. 97.0 μmol tyrosine released/min/g tissue)) as was relative gizzard weight (1.32 vs 1.10 g/100 g BW). The significantly improved digestive organ weights and enzyme activities in IF pullets may contribute to an improvement in feed utilization.