EMAIL THIS PAGE TO A FRIEND

Biomedical materials (Bristol, England)

Enhancement of osteoblastic differentiation in alginate gel beads with bioactive octacalcium phosphate particles.


PMID 26657659

Abstract

The present study investigated whether alginate (Alg) hydrogel microbeads have a role in maintaining mouse bone marrow stromal ST-2 cells and release the cells after being stimulated by synthetic octacalcium phosphate (OCP), which is a mineral crystal capable of stimulating osteoblastic differentiation during a conversion process to hydroxyapatite (HA). The ST-2 cell suspension in the alginate solution, which contained various concentrations of OCP granules with diameters less than 53 μm, was extruded drop-wise into a stirred gelation solution containing BaCl2 using an encapsulator with nitrogen gas stream. The Alg-microbeads (Alg/OCP · ST-2 microbeads) that were generated, which had a diameter of approximately 400 μm, were incubated for up to 14 d and then assessed for osteoblastic differentiation. Alg-microbeads with cells were also incubated to identify the possible conversion from OCP to HA. Osteoblast differentiation markers in ST-2 cells, alkaline phosphatase (ALP) and collagen type I, were up-regulated in the presence of higher amounts of OCP. X-ray diffraction analysis and Fourier transform infrared spectroscopy confirmed that the OCP tended to convert to HA over time, suggesting that the OCP in Alg-microbeads interacts three-dimensionally with ST-2 cells and stimulates its osteoblastic differentiation. The release of ST-2 cells from the microbeads was also estimated. ST-2 cells were identified outside of the microbeads, although the cell number tended to decrease with increasing OCP. These results suggest that Alg/OCP microbeads could be used as a vehicle to activate osteoblastic cells and deliver them to sites where bone regeneration is needed.