EMAIL THIS PAGE TO A FRIEND

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

Placental Growth Factor Promotes Ovarian Cancer Cell Invasion via ZEB2.


PMID 26824454

Abstract

The aggressive manner of ovarian cancer (OVC) cells accounts for the majority of its lethality. Recently, we have shown that placental growth factor (PLGF) promotes metastases of OVC cells through miR-543-regulated MMP7. In the current study, we analyzed the effects of PLGF on another cell invasion associated protein, ZEB2, in OVC cells. The PLGF and ZEB2 levels in OVC tissues were compared to the paired adjacent non-tumor ovary tissue. We modified ZEB2 levels in OVC cells, and examined its effects on PLGF mRNA and protein levels by RT-qPCR and by Western blot, respectively. We also modified PLGF levels in OVC cells, and examined its effects on ZEB2 mRNA and protein levels by RT-qPCR and by Western blot, respectively. Then, we examined the cell invasiveness in PLGF-modified OVC cells in a transwell cell invasion assay. Finally, we used specific signal pathway inhibitors to treat PLGF-modified OVC cells and examined the effects on ZEB2 activation. PLGF and ZEB2 levels were both significantly increased in OVC tissues, compared to the paired adjacent non-tumor ovary tissue. The PLGF and ZEB2 levels were strongly correlated. ZEB2 modification did not alter PLGF levels. Overexpression of PLGF in OVC cells significantly increased ZEB2 levels and cell invasiveness, while PLGF depletion in OVC cells significantly decreased ZEB2 levels and cell invasiveness. Application of a specific MAPK-p38 inhibitor, but not application of specific inhibitors for MAPK-p42/p44, PI3k/Akt, or JNK signaling pathways, to PLGF-overexpressing OVC cells substantially abolished the PLGF-induced ZEB2 activation. PLGF enhances OVC cell invasion through MAPK-p38-dependent activation of ZEB2.