EMAIL THIS PAGE TO A FRIEND

European journal of pain (London, England)

Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete Freund's adjuvant (CFA).


PMID 27506893

Abstract

Multiple mechanisms contribute to the stimulus-evoked pain hypersensitivity that may be experienced after peripheral inflammation. Persistent pathological stimuli in many pain conditions affect the expression of certain genes through epigenetic alternations. The main purpose of our study was to investigate the role of epigenetic modification on potassium-chloride co-transporter 2 (KCC2) gene expression in the persistence of inflammatory pain. Persistent inflammatory pain was induced through the injection of complete Freund's adjuvant (CFA) in the left hind paw of rats. Acetyl-histone H3 and H4 level was determined by chromatin immunoprecipitation in the spinal dorsal horn. Pain behaviour and inhibitory synaptic function of spinal cord were determined before and after CFA injection. KCC2 expression was determined by real time RT-PCR and Western blot. Intrathecal KCC2 siRNA (2xa0μg per 10xa0μL per rat) or HDAC inhibitor (10xa0μg per 10xa0μL per rat) was injected once daily for 3xa0days before CFA injection. Persistent inflammatory pain epigenetically suppressed KCC2 expression through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in decreased inhibitory signalling efficacy. KCC2 knock-down caused by intrathecal administration of KCC2 siRNA in naïve rats reduced KCC2 expression in the spinal cord, leading to sensitized pain behaviours and impaired inhibitory synaptic transmission in their spinal cords. Moreover, intrathecal HDAC inhibitor injection in CFA rats increased KCC2 expression, partially restoring the spinal inhibitory synaptic transmission and relieving the sensitized pain behaviour. These findings suggest that the transcription of spinal KCC2 is regulated by histone acetylation epigenetically following CFA. Persistent pain suppresses KCC2 expression through HDAC-mediated histone hypoacetylation and consequently impairs the inhibitory function of inhibitory interneurons. Drugs such as HDAC inhibitors that suppress the influences of persistent pain on the expression of KCC2 may serve as a novel analgesic.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

M1824
MC1568, ≥97% (HPLC)
C17H15FN2O3
EPS002
MS-275, A HDAC1 and HDAC3 inhibitor
C21H20N4O3