EMAIL THIS PAGE TO A FRIEND

Neurochemical research

Curcumin Monoglucoside Shows Improved Bioavailability and Mitigates Rotenone Induced Neurotoxicity in Cell and Drosophila Models of Parkinson's Disease.


PMID 27535828

Abstract

Curcumin (CUR), a dietary polyphenol has diverse pharmacologic effects, but is limited by poor bioavailability. This is probably due to decreased solubility, cellular uptake and stability. In order to enhance its solubility and bioavailability, we synthesized the CUR bioconjugate curcumin monoglucoside (CMG) and tested its bioavailability, neuroprotective and anti-apoptotic propensity against rotenone (ROT) induced toxicity in N27 dopaminergic neuronal cells and Drosophila models. Our results elucidate that CMG showed improved bioavailability than CUR in N27 cells. Pre-treatment with CMG protected against ROT neurotoxicity and exerted antioxidant effects by replenishing cellular glutathione levels and significantly decreasing reactive species. CMG pre-treatment also restored mitochondrial complex I and IV activities inhibited by ROT. ROT-induced nuclear damage was also restored by CMG as confirmed by comet assay. CMG induced anti-apoptotic effects was substantiated by decreased phosporylation of JNK3 and c-jun, which in turn decreased the cleavage of pro-caspase 3. Q-PCR analysis of redox genes showed up-regulation of NOS2 and down-regulation of NQO1 upon ROT exposure and this was attenuated by CMG pre-treatment. Studies in the Drosophila ROT model revealed that, CMG administration showed better survival rate and locomotor activity, improved antioxidant activity and dopamine content than ROT treated group and was comparable with the CUR group. Based on these data, we surmise that CMG has improved bioavailability and offered neuroprotection comparable with CUR, against ROT-induced toxicity both in dopaminergic neuronal cell line and Drosophila models, with therapeutic implications for PD.