EMAIL THIS PAGE TO A FRIEND

Journal of hematology & oncology

The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms.


PMID 27678372

Abstract

Neuroblastoma is a relatively common and highly belligerent childhood tumor with poor prognosis by current therapeutic approaches. A novel anti-cancer agent of the di-2-pyridylketone thiosemicarbazone series, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), demonstrates promising anti-tumor activity. Recently, a second-generation analogue, namely di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), has entered multi-center clinical trials for the treatment of advanced and resistant tumors. The current aim was to examine if these novel agents were effective against aggressive neuroblastoma in vitro and in vivo and to assess their mechanism of action. Neuroblastoma cancer cells as well as immortalized normal cells were used to assess the efficacy and selectivity of DpC in vitro. An orthotopic SK-N-LP/Luciferase xenograft model was used in nude mice to assess the efficacy of DpC in vivo. Apoptosis in tumors was confirmed by Annexin V/PI flow cytometry and H&E staining. DpC demonstrated more potent cytotoxicity than Dp44mT against neuroblastoma cells in a dose- and time-dependent manner. DpC significantly increased levels of phosphorylated JNK, neuroglobin, cytoglobin, and cleaved caspase 3 and 9, while decreasing IkBα levels in vitro. The contribution of JNK, NF-ĸB, and caspase signaling/activity to the anti-tumor activity of DpC was verified by selective inhibitors of these pathways. After 3xa0weeks of treatment, tumor growth in mice was significantly (p < 0.05) reduced by DpC (4xa0mg/kg/day) given intravenously and the agent was well tolerated. Xenograft tissues showed significantly higher expression of neuroglobin, cytoglobin, caspase 3, and tumor necrosis factor-α (TNFα) levels and a slight decrease in interleukin-10 (IL-10). DpC was found to be highly potent against neuroblastoma, demonstrating its potential as a novel therapeutic for this disease. The ability of DpC to increase TNFα in tumors could also promote the endogenous immune response to mediate enhanced cancer cell apoptosis.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

C8221
Caffeic acid phenethyl ester, ≥97% (HPLC), powder
C17H16O4