EMAIL THIS PAGE TO A FRIEND

ACS applied materials & interfaces

Impact of Collagen/Heparin Multilayers for Regulating Bone Cellular Functions.


PMID 27762547

Abstract

Bone cell interaction with extracellular matrix (ECM) microenvironment is of critical importance when engineering surface interfaces for bone regeneration. In this work layer-by-layer films of type I collagen (coll), the major constituent of bone ECM, and heparin (hep), a glycosaminoglycan, were assembled on poly(l-lactic acid) (PLLA) substrates to evaluate the impact of the biomacromolecular coating on cell activity. The surface modification of PLLA demonstrated that the hep/coll multilayer is stable after 10 bilayers (confirmed by contact angle, infrared spectroscopy, and morphological analysis). This simple approach provided novel information on the effect of heparin on type I collagen hierarchical organization and subsequent cell response of osteoblast-like (MC3T3-E1) and human bone marrow-derived mesenchymal stem cells (hMSCs). Interestingly, the number of deposited heparin layers (1 or 10) appeared to play an important role in the self-assembly of collagen into fibrils, stabilizing the fibrous collagen layer, and potentially impacting hMSCs activity.