EMAIL THIS PAGE TO A FRIEND

International journal of oncology

Low-dose irradiation promotes proliferation of the human breast cancer MDA-MB-231 cells through accumulation of mutant P53.


PMID 27959407

Abstract

Low-dose irradiation (LDIR) has been proven to have differential biological effects on normal mammalian somatic cells and cancer cells. Our previous study showed that p53 gene status is a critical factor regulating the effect of LDIR on cancer cells. We investigated the effect of LDIR on the breast cancer cell line MDA-MB-231 that harbors a mutant p53 gene, and the normal breast fibroblast cell line Hs 578Bst. In the present study, we showed that 150xa0mGy LDIR pormoted growth of MDA-MB-231 cells but not Hsxa0578Bst cells. Through cell cycle analyses, we found that LDIR accelerated cell cycle into S phase in MDA-MB-231 cells, but did not affect the cell cycle of Hs 578Bst cells. Using western blotting, we demonstrated that the expression of CDK4, CDK6 and cyclinxa0D1 was upregulated in MDA-MB-231 cells after LDIR. Although LDIR increased ataxia-telangiectasia mutated (ATM) level in both MDA-MB-231 cells and Hsxa0578Bst cells and activated ATM/p53/p21 pathway, only the mutant type of p53 (mtp53) protein in MDA-MB-231 cells was shown to be accumulated after LDIR. Using ATM inhibitor or lentivirus-mediated small interfering RNA (siRNA) to block the ATM/p53/p21 pathway in MDA-MB-231 cells, the LDIR-induced cell proliferation was abolished. When we introduced wild-type p53 (wtp53) protein into MDA-MB-231 cells, the LDIR-induced cell proliferation was also abolished. These findings suggest that normal p53 function is crucial in ATM/p53/p21 pathway activated by LDIR. The p53 status is the most probable reason leading to differential LDIR biological activities between breast tumor cells and normal breast cells.