EMAIL THIS PAGE TO A FRIEND

Bone

Role of endoplasmic reticulum stress in disuse osteoporosis.


PMID 27989543

Abstract

Osteoporosis is a major skeletal disease with low bone mineral density, which leads to an increased risk of bone fracture. Salubrinal is a synthetic chemical that inhibits dephosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) in response to endoplasmic reticulum (ER) stress. To understand possible linkage of osteoporosis to ER stress, we employed an unloading mouse model and examined the effects of salubrinal in the pathogenesis of disuse osteoporosis. The results presented several lines of evidence that osteoclastogenesis in the development of osteoporosis was associated with ER stress, and salubrinal suppressed unloading-induced bone loss. Compared to the age-matched control, unloaded mice reduced the trabecular bone area/total area (B.Ar/T.Ar) as well as the number of osteoblasts, and they increased the osteoclasts number on the trabecular bone surface in a time-dependent way. Unloading-induced disuse osteoporosis significantly increased the expression of Bip, p-eIF2α and ATF4 in short-term within 6h of tail suspension, but time-dependent decreased in HU2d to HU14d. Furthermore, a significant correlation of ER stress with the differentiation of osteoblasts and osteoclasts was observed. Administration of salubrinal suppressed the unloading-induced decrease in bone mineral density, B.Ar/T.Ar and mature osteoclast formation. Salubrinal also increased the colony-forming unit-fibroblasts and colony-forming unit-osteoblasts. It reduced the formation of mature osteoclasts, suppressed their migration and adhesion, and increased the expression of Bip, p-eIF2α and ATF4. Electron microscopy showed that rough endoplasmic reticulum expansion and a decreased number of ribosomes on ER membrane were observed in osteoblast of unloading mice, and the abnormal ER expansion was significantly improved by salubrinal treatment. A TUNEL assay together with CCAAT/enhancer binding protein homologous protein (CHOP) expression indicated that ER stress-induced osteoblast apoptosis was rescued by salubrinal. Collectively, the results support the notion that ER stress plays a key role in the pathogenesis of disuse osteoporosis, and salubrinal attenuates unloading-induced bone loss by altering proliferation and differentiation of osteoblasts and osteoclasts via eIF2α signaling.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

S7152
Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu-Pro-Phe, ≥97% (HPLC)
C81H118N20O23