EMAIL THIS PAGE TO A FRIEND

International journal of biological macromolecules

Identification of multi-targeted anti-migraine potential of nystatin and development of its brain targeted chitosan nanoformulation.


PMID 28041915

Abstract

The complex pathophysiology involved in migraine necessitates the drug treatment to act on several receptors simultaneously. The present investigation was an attempt to discover the unidentified anti-migraine activity of the already marketed drugs. Shared featured pharmacophore modeling was employed for this purpose on six target receptors (β2 adrenoceptor, Dopamine D3, 5HT1B, TRPV1, iGluR5 kainate and CGRP), resulting in the generation of five shared featured pharmacophores, which were further subjected to virtual screening of the ligands obtained from Drugbank database. Molecular docking, performed on the obtained hit compounds from virtual screening, indicated nystatin to be the only active lead against the receptors iGluR5 kainate receptor (1VSO), CGRP (3N7R), β2 adrenoceptor (3NYA) and Dopamine D3 (3PBL) with a high binding energy of -11.1, -10.9, -10.2 and -12kcal/mole respectively. The anti-migraine activity of nystatin was then adjudged by fabricating its brain targeted chitosan nanoparticles. Its brain targeting efficacy, analyzed qualitatively by confocal laser scanning microscopy, demonstrated a significant amount of drug reaching the brain. The pharmacodynamic models on Swiss male albino mice revealed significant anti-migraine activity of the nanoformulation. The present study reports for the first time the therapeutic potential of nystatin in migraine management, hence opening avenues for its future exploration.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

88071
meso-Tetraphenylporphyrin, BioReagent, suitable for fluorescence, ≥99.0% (HPLC)
C44H30N4