EMAIL THIS PAGE TO A FRIEND

Acta tropica

Cloning, characterization and transmission blocking potential of midgut carboxypeptidase A in Anopheles stephensi.


PMID 28087198

Abstract

Transmission-blocking vaccines (TBV) interrupt malaria parasite transmission and hence form an important component for malaria eradication. Mosquito midgut exopeptidases such as aminopeptidase N & carboxypeptidase B have demonstrated TBV potential. In the present study, we cloned and characterized carboxypeptidase A (CPA) from the midgut of an important malarial vector, Anopheles stephensi. ClustalW amino acid alignment and in silico 3-dimensional structure analysis of CPA predicted the presence of active sites involved in zinc and substrate binding that are conserved among all the known mosquito species. Real-time PCR analysis demonstrated that CPA is predominantly expressed in the midgut throughout the mosquito life cycle and that this gene is significantly elevated in P. berghei-infected mosquitoes compared to uninfected blood-fed controls. The high midgut CPA activity correlated with the prominent mRNA levels observed. Peptide-based anti-CPA antibodies were raised that cross-reacted specifically to ∼48kDa and ∼37kDa bands, which correspond to zymogen and active forms of CPA. Further, the addition of CPA-directed antibodies to P. berghei-containing blood meal significantly reduced the mosquito infection rate in the test group compared to control and blocked the parasite development in the midgut. These results support further development of A. stephensi CPA as a candidate TBV.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

H6875
Hippuryl-L-phenylalanine
C18H18N2O4
C8031
N6-Cyclopentyladenosine, solid
C15H21N5O4