EMAIL THIS PAGE TO A FRIEND

IUBMB life

Tetramethylpyrazine attenuates sinusoidal angiogenesis via inhibition of hedgehog signaling in liver fibrosis.


PMID 28112475

Abstract

Accumulating evidence indicates that hedgehog signaling plays a pivotal role in pathological angiogenesis and is involved in wound-healing responses in a number of adult tissues, including the liver. We previously demonstrated that hedgehog signaling promoted proliferation and inhibited apoptosis in hepatic stellate cells. This study was aimed to evaluate the effect of tetramethylpyrazine (TMP) on hedgehog signaling and to further examine the molecular mechanisms of TMP-induced antiangiogenesic effects in liver fibrosis. We found that TMP ameliorated the expression of proangiogenic markers vascular endothelial growth factor A (VEGF-A), vascular endothelial growth factor receptor 2 (VEGF-R2), platelet-derived growth factor BB (PDGF-BB), platelet-derived growth factor-β receptor (PDGF-βR) and hypoxia inducible factor 1α (HIF-1α), concomitant with reduced abundance of endothelial markers platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), CD34 and von willebrand factor in vivo and in vitro. Interestingly, TMP attenuated the abundance of sonic hedgehog, smoothened (Smo) and glioblastoma but increased the expression of hedgehog-interacting protein in liver sinusoidal endothelial cells, which was underlying mechanism for the antiangiogenesic activity of TMP. Downregulation of Smo activity, using selective Smo inhibitor cyclopamine, lead to a synergistic effect with TMP, whereas Smo overexpression plasmid impaired the induction of antiangiogenesic effects of TMP. Overall, these results provide novel implications to reveal the molecular mechanism of TMP-inhibited liver sinusoidal angiogenesis, by which points to the possibility of using TMP-based antiangiogenic drugs for the treatment of liver fibrosis. © 2017 IUBMB Life, 69(2):115-127, 2017.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

CDS022173
Imatinib
C29H31N7O