Histologic and Optical Coherence Tomographic Correlates in Drusenoid Pigment Epithelium Detachment in Age-Related Macular Degeneration.

PMID 28153442


Drusenoid pigment epithelium detachment (DPED) is a known precursor to geographic atrophy in age-related macular degeneration (AMD). We sought histologic correlates for spectral-domain (SD) optical coherence tomography (OCT) signatures in DPED and determined the frequency and origin of these OCT signatures in a clinical cohort of DPED eyes. Laboratory imaging and histologic comparison, and retrospective, observational cohort study. Four donor eyes with histopathologic diagnosis of AMD (2 with nonneovascular DPED and 2 with neovascular pigment epithelium detachment [PED]) and 49 eyes of 33 clinic patients with nonneovascular DPED more than 2 mm in diameter. Donor eyes underwent multimodal ex vivo imaging, including SD OCT, then processing for high-resolution histologic analysis. All clinic patients underwent SD OCT, near-infrared reflectance, and color photography. Histologic correlates for SD OCT signatures in DPED, estimate of coverage by different retinal pigment epithelium (RPE) phenotypes in the DPED surface; frequency and origin of histologically verified SD OCT signatures in a clinical cohort of DPED eyes, and comparisons of histologic features between neovascular PED and DPED resulting from AMD. Intraretinal and subretinal hyperreflective foci as seen on SD OCT correlated to RPE cells on histologic examination. Hypertransmission of light below the RPE-basal lamina band correlated with dissociated RPE. Subretinal hyperreflective material resulting from acquired vitelliform lesions corresponded to regions of apically expelled RPE organelles. In the clinical cohort, all histologically verified reflectivity signatures were visible and quantifiable. The appearance of intraretinal hyperreflective foci was preceded by thickening of the RPE-basal lamina band. Compared with PEDs associated with neovascular AMD, DPEDs had different crystallization patterns, no lipid-filled cells, and thinner basal laminar deposits. Multiple RPE fates in AMD, including intraretinal cells that are highly prognostic for progression, can be followed and quantified reliably using eye-tracked serial SD OCT. This information may be particularly useful for obtaining an accurate timeline of incipient geographic atrophy in clinic populations and for quantifying anatomic end points and response to therapy in AMD clinical trials.