Biochemical and biophysical research communications

MicroRNA-384-mediated Herpud1 upregulation promotes angiotensin II-induced endothelial cell apoptosis.

PMID 28483519


Angiotensin II (Ang II)-induced damage to endothelial cells (ECs) plays a crucial role in the pathogenesis of atherosclerosis. This study aimed to investigate the role of microRNA-384 (miR-384) in endothelial cell apoptosis. The expression of five various miRNAs in Ang II-treated human umbilical vein endothelial cells (HUVECs) were detected by qPCR. The Ang II-induced apoptosis of HUVECs was determined by flow cytometry, TUNEL staining and western blot. Endoplasmic reticulum (ER) stress markers were detected by western blot analysis. The target gene of miR-384 was determined by bioinformatics analyses. qPCR, western blotting and immunofluorescence were performed to determine the expression level of homocysteine inducible ER protein with ubiquitin like domain 1 (Herpud1). miR-384 expression level was significantly decreased in Ang II-treated HUVECs. Ang II-induced HUVEC apoptosis was accompanied by the occurrence of ER stress. A decreased rate of HUVEC apoptosis and a decreased rate of ER stress were observed following restoration of miR-384 expression. Herpud1 expression level was increased in HUVECs treated with Ang II, and miR-384 mimics effectively inhibited Herpud1 expression. Mechanistically, miR-384 directly targets the 3'-untranslated region of Herpud1. Furthermore, effects of miR-384 on HUVECs apoptosis and ER stress were at least partly reversed by knockdown of Herpud1 expression. The results of the present study collectively indicated that miR-384 expression level was downregulated in Ang II-treated HUVECs and miR-384 overexpression protected HUVECs against Ang II-induced apoptosis by negatively regulating Herpud1. These findings point towards new strategies by which apoptosis of ECs can be suppressed.