EMAIL THIS PAGE TO A FRIEND

Molecular and cellular biology

Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc.


PMID 7523859

Abstract

We recently reported that interleukin-3, Steel factor, and erythropoietin all induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cell lines. We have now further characterized the proteins that become associated with Shc following stimulation with these cytokines and found that, in response to all three, the tyrosine-phosphorylated form of Shc binds to common 145- and 52-kDa proteins which also become tyrosine phosphorylated in response to these growth factors. The 145-kDa protein, which appears, from antiphosphotyrosine blots of two-dimensional O'Farrell gels, to exist in four different phosphorylation states following cytokine stimulation (with isoelectric points ranging from 7.2 to 7.8), does not appear to be immunologically related to the beta subunit of the interleukin-3 receptor, c-Kit, BCR, ABL, JAK1, JAK2, Sos1, eps15, or insulin receptor substrate 1 protein. Silver-stained sodium dodecyl sulfate gels indicate that the association of the 145-kDa protein with Shc occurs only after cytokine stimulation and that it can bind to the tyrosine-phosphorylated form of Shc in its non-tyrosine-phosphorylated state. The latter finding, in conjunction with the observations that p145 does not bind, in vitro, to the Src homology 2 (SH2) domain of Shc, that it is not present in anti-Grb2 immunoprecipitates, and that a phosphopeptide which blocks the binding of Shc to the SH2 domain of Grb2 also blocks the binding of Shc to p145, suggests that p145 contains an SH2 domain and competes with Grb2 for the same tyrosine-phosphorylated site on Shc. This implicates p145 as a potential regulator of Ras activity and, perhaps, of other as yet unidentified functions of Shc.