EMAIL THIS PAGE TO A FRIEND

Molecular biology of the cell

Fibronectin receptor functions in embryonic cells deficient in alpha 5 beta 1 integrin can be replaced by alpha V integrins.


PMID 8930896

Abstract

alpha 5 beta 1 integrin mediates cell adhesion to extracellular matrix by interacting with fibronectin (FN). Mouse lines carrying null mutations in genes encoding either the alpha 5 integrin subunit or FN have been generated previously. Both mutations are embryonic lethal with overlapping defects, but the defects of alpha 5-null embryos are less severe. Primary embryonic cells lacking alpha 5 beta 1 are able to adhere to FN, form focal contacts, migrate on FN, and assemble FN matrix. These results suggest the involvement of (an)other FN receptors(s). In this study, we examined functions of alpha 4 beta 1 and alpha V integrins in embryonic cells lacking alpha 5 beta 1. Our analysis of cells lacking both alpha 4 beta 1 and alpha 5 beta 1 showed that alpha 4 beta 1 is also not required for these FN-dependent functions. Using alpha V-specific blocking reagents, we showed that alpha V integrins are required for alpha 5-null cells, but not wild-type cells, to adhere and spread on FN. Our data also showed that, although the expression levels of alpha V integrins on the wild-type and alpha 5-null cells are similar, there is an increase in recruitment of alpha V integrins into focal contacts in alpha 5-null cells plated on FN, indicating that alpha V integrins can compensate functionally for the loss of alpha 5 beta 1 in focal contacts of alpha 5-null cells. Finally, our data suggested possible roles for alpha V integrins in replacing the role of alpha 5 beta 1 in FN matrix assembly in vitro and in FN-dependent embryonic functions in vivo.

Related Materials