EMAIL THIS PAGE TO A FRIEND

Neuropharmacology

3-Alpha-chloro-imperialine, a potent blocker of cholinergic presynaptic modulation of glutamatergic afferents in the rat neostriatum.


PMID 9886672

Abstract

Cortico-thalamic glutamatergic afferents control neuronal activity in the neostriatum. Cholinergic interneurons modulate the activity of medium spiny neurons through both pre- and post-synaptic actions via the activation of muscarinic receptors. The muscarinic pre-synaptic modulation was analyzed electrophysiologically. The transmitter release, induced by 4-AP, was studied and the block of paired pulse facilitation (PPF) by different muscarinic receptor antagonists was analyzed. The GABA(A) antagonist bicuculline isolated the glutamatergic transmission. Muscarinic agonists decreased the frequency of random synaptic potentials induced by 4-AP in about 60% of the cases without changes in input resistance (RN) of the post-synaptic neuron or in the mean amplitude of the synaptic events; indicating a presynaptic action. The administration of both 1 microM carbachol or 20 nM muscarine increased PPF. Muscarinic receptor antagonists blocked this action with a potency order: 3-alpha-chloroimperialine > 4-DAMP>AFDX-116 > or = gallamine > pirenzepine. The IC50's for the first three antagonists were (nM): 0.65, 1.1, and 3.0. Their respective Hill coefficients were: 1.9, 1.4, and 1.3. 3-alpha-Chloroimperialine reduced the PPF almost completely. The M3 and the M2 muscarinic receptor antagonists 4-DAMP and AFDX-116, given at saturating concentrations, consistently blocked only a part of the PPF but had additive effects when given together. These data are consistent with the existence of both M2 and M3 muscarinic receptors in striatal glutamatergic afferents.