Attention:

Certain features of Sigma-Aldrich.com will be down for maintenance the evening of Friday August 18th starting at 8:00 pm CDT until Saturday August 19th at 12:01 pm CDT.   Please note that you still have telephone and email access to our local offices. We apologize for any inconvenience.

Chemical Synthesis

Jørgensen’s Organocatalysts

Introduction

Professor Karl Anker Jørgensen and his group have developed (R)- and (S)-α,α-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether which serve as excellent chiral organocatalysts in the direct asymmetric α-functionalization of aldehydes.1

In the field of asymmetric synthesis this stereoselective functionalization certainly represents an important breakthrough. Jørgensen’s diarylprolinol silyl ether reagents were shown to catalyze a variety of bond-forming reactions such as C–C, C–N, C–O, C–S and C–Hal in high yields with excellent levels of enantiocontrol.



Representative Applications

α-Amination

Direct α-amination between aldehydes and azodicarboxylates at room temperature using Jørgensen’s organocatalyst was reported to match enantioselectivities achieved by using l-proline as a catalyst. Interestingly, the aminated products were of inverted absolute configuration even though the absolute configuration of the catalyst is the same, due to steric shielding.



Domino Conjugated Nucleophilic Addition-Electrophilic Amination

A simple approach to highly functionalized molecules is Jørgensen’s one-pot multicomponent domino conjugated nucleophilic addition-electrophilic amination protocol. This procedure gives access to 1,2-aminothiol derivatives with enantioselectivities >99% ee. The soft sulfur nucleophile first reacts with the iminium ion intermediate formed by the α,β-unsaturated aldehyde, followed by the addition of the electrophile (i.e. the azodicarboxylate) to the enamine intermediate, yielding nearly enantiopure products when 2-[bis(3,5-bistrifluoromethylphenyl)trimethylsilanyloxy- methyl]pyrrolidine was used as the catalyst.



Asymmetric Epoxidation

In addition to direct α-functionalization, Jørgensen also reported the first organocatalytic asymmetric epoxidation of α,β-unsaturated aldehydes using his sterically encumbered chiral pyrrolidine derivative under environmentally friendly reaction conditions (e.g. hydrogen peroxide as the oxidant). A series of differently substituted enals were transformed into the corresponding α,β-epoxy aldehydes with up to >90%, diastereoselectivities up to 98:2 and enantioselectivities up to 98%.



Asymmetric Hydrophosphinylation

Very recently, Melchiorre and Córdova have simultaneously developed the first organocatalytic asymmetric hydrophosphinylation of α,β-unsaturated aldehydes, affording direct access to highly enantioenriched β-phosphine aldehydes. Advantageously, and in contrast to a metal-catalyzed process, the organocatalytic variant does not suffer from product inhibition arising from the coordination ability of the phosphorus atom. The chiral phosphines can provide, after simple manipulations, valuable bidentate P-ligands for metal-catalyzed enantioselective transformations.



Product Information

 


 

Product #   Product Name Structure Add to Cart
677019 (S)-α,α-Bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether  
677213 (R)-α,α-Bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether