Alanine Aminotransferase Activity Assay Kit

Catalog Number MAK052
Storage Temperature –20 °C

TECHNICAL BULLETIN

Product Description
Alanine Aminotransferase (ALT), also known as serum glutamic-pyruvic transaminase (SGPT), is a pyridoxal-phosphate-dependent enzyme that catalyzes the reversible transfer of an amino group from alanine to α-ketoglutarate, generating pyruvate and glutamate. ALT is found primarily in liver and serum, but occurs in other tissues as well. Hepatocellular injury often results in an increase of serum ALT levels and serum ALT levels can be used as a marker for liver injury.

The ALT Activity Assay Kit provides a simple and direct procedure for measuring ALT activity in a variety of biological samples.

ALT activity is determined by a coupled enzyme assay, which results in a colorimetric (570 nm)/fluorometric (λ_ex = 535/λ_em = 587 nm) product, proportional to the pyruvate generated. One unit of ALT is defined as the amount of enzyme that generates 1.0 µmole of pyruvate per minute at 37 °C.

Components
The kit is sufficient for 100 assays in 96 well plates.

ALT Assay Buffer
Catalog Number MAK052A
25 mL

Fluorescent Peroxidase Substrate, in DMSO
Catalog Number MAK052B
0.2 mL

ALT Enzyme Mix
Catalog Number MAK052C
1 vl

ALT Substrate
Catalog Number MAK052D
1 vl

Pyruvate Standard, 100 nmole/µL
Catalog Number MAK052E
0.1 mL

ALT Positive Control
Catalog Number MAK052F
1 vl

Reagents and Equipment Required but Not Provided.
- 96 well flat-bottom plate – It is recommended to use black plates with clear bottoms for fluorescence assays and clear plates for colorimetric assays.
- Fluorescence or spectrophotometric multiwell plate reader

Precautions and Disclaimer
This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions
Briefly centrifuge vials before opening. Use ultrapure water for the preparation of reagents. To maintain reagent integrity, avoid repeated freeze/thaw cycles.

ALT Assay Buffer – Allow buffer to come to room temperature before use.

Fluorescent Peroxidase Substrate – Allow reagent to come to room temperature before use. Mix well by pipetting, then aliquot and store, protected from light and moisture, at –20 °C.

ALT Enzyme Mix – Reconstitute in 220 µL of water. Mix well by pipetting, then aliquot and store at –20 °C. Use within two months of reconstitution.

ALT Substrate – Reconstitute in 1.1 mL of ALT Assay Buffer. Mix well by pipetting, then aliquot and store at –20 °C. Keep cold while in use. Use within two months of reconstitution.

ALT Positive Control – Reconstitute in 100 µL of water. Mix well by pipetting, then aliquot and store at –20 °C. Keep cold while in use. Use within two months of reconstitution.
Storage/Stability
The kit is shipped on wet ice. Storage at –20 °C, protected from light, is recommended.

Procedure
All samples and standards should be run in duplicate.

Pyruvate Standards for Colorimetric Detection
Dilute 10 μL of the 100 nmole/μL Pyruvate Standard with 990 μl of ALT Assay Buffer to prepare a 1 nmole/μL standard solution. Add 0, 2, 4, 6, 8, and 10 μL of the 1 nmole/μL standard solution into a 96 well plate, generating 0 (blank), 2, 4, 6, 8, and 10 nmole/well standards. Add ALT Assay Buffer to each well to bring the volume to 20 μL.

Pyruvate Standards for Fluorometric Detection
Prepare a 1 nmole/μL standard solution as for the colorimetric assay. Dilute 10 μL of the 1 nmole/μL standard solution with 90 μL of ALT Assay Buffer to make a 0.1 nmole/μL standard solution. Add 0, 2, 4, 6, 8, and 10 μL of the 0.1 nmole/μL standard solution into a 96 well plate, generating 0 (blank), 0.2, 0.4, 0.6, 0.8, and 1.0 nmole/well standards. Add ALT Assay Buffer to each well to bring the volume to 20 μL.

Sample Preparation
Both the colorimetric and fluorometric assays require 20 μL of sample for each reaction (well).

Tissue (50 mg) or cells (1 × 10^6) should be rapidly homogenized with 200 μL of ALT Assay Buffer. Centrifuge at 15,000 × g for 10 minutes to remove insoluble materials.

Serum samples can be directly added to wells. Add 1–20 μL samples into wells of a 96 well plate.

Bring samples to a final volume of 20 μL with ALT Assay Buffer. For unknown samples, it is suggested to test several sample volumes to make sure the readings are within the standard curve range.

For the positive control (optional), add 5 μL of the ALT Positive Control to wells. Adjust well volume to 20 μL with ALT Assay Buffer.

Assay Reaction
1. Set up the Master Reaction Mix according to the scheme in Table 1. 100 μL of the Master Reaction Mix is required for each reaction (well). Prepare enough Master Reaction Mix for the number of samples, positive controls, and standards to be performed.

Table 1. Master Reaction Mix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT Assay Buffer</td>
<td>86 μL</td>
</tr>
<tr>
<td>Fluorescent Peroxidase Substrate</td>
<td>2 μL</td>
</tr>
<tr>
<td>ALT Enzyme Mix</td>
<td>2 μL</td>
</tr>
<tr>
<td>ALT Substrate</td>
<td>10 μL</td>
</tr>
</tbody>
</table>

2. Add 100 μL of the Master Reaction Mix to each of the standard, positive control, and test wells. Mix well using a horizontal shaker or by pipetting.

3. After 2–3 minutes, take the initial measurement (T_initial). For colorimetric assays, measure the absorbance at 570 nm (A_570). For fluorometric assays, measure fluorescence intensity (FLU_initial, λ_ex = 535/λ_em = 587 nm).

4. Incubate the plate at 37 °C taking measurements every 5 minutes. Protect the plate from light during the incubation.

5. Continue taking measurements until the value of the most active sample is greater than the value of the highest standard. At this time the most active sample is near or exceeds the end of the linear range of the standard curve.

6. The final measurement for calculating the enzyme activity would be the penultimate reading or the value before the most active sample is near or exceeds the end of the linear range of the standard curve. The time of the penultimate reading is T_final.

7. Calculate the change in measurement from T_initial to T_final for the samples and positive control.

\[\Delta A_{570} = (A_{570})_{\text{final}} - (A_{570})_{\text{initial}} \]

or

\[\Delta \text{FLU} = (\text{FLU}_{\text{final}}) - (\text{FLU}_{\text{initial}}) \]

Note: It is essential the initial and final measurements fall within the linear range of the reaction.
Results
Calculations
Correct for the background by subtracting the value obtained for the 0 (blank) standard from all standard readings.

Plot the pyruvate standard curve using the T_{final} readings.

Compare the Δmeasurement value (ΔA_{570} or ΔFLU) of each sample to the standard curve to determine the amount of pyruvate generated between T_{initial} and T_{final} (B).

Note: A new standard curve must be set up each time the assay is run.

The ALT activity of a sample may be determined by the following equation:

$$\text{ALT Activity} = \frac{B \times \text{Sample Dilution Factor}}{(T_{\text{final}} - T_{\text{initial}}) \times V}$$

$B =$ Amount (nmole) of pyruvate generated between T_{initial} and T_{final}

$T_{\text{initial}} =$ Time of first reading in minutes.

$T_{\text{final}} =$ Time of penultimate reading in minutes.

$V =$ sample volume (mL) added to well.

ALT activity reported as nmole/min/mL = milliunit/mL, where one milliunit (mU) of ALT is defined as the amount of enzyme that generates 1.0 nmole of pyruvate per minute at 37 °C.
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Suggested Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Not Working</td>
<td>Cold assay buffer</td>
<td>Assay Buffer must be at room temperature</td>
</tr>
<tr>
<td></td>
<td>Omission of step in procedure</td>
<td>Refer and follow Technical Bulletin precisely</td>
</tr>
<tr>
<td></td>
<td>Plate reader at incorrect wavelength</td>
<td>Check filter settings of instrument</td>
</tr>
<tr>
<td></td>
<td>Type of 96 well plate used</td>
<td>For fluorescence assays, use black plates with clear bottoms. For colorimetric assays, use clear plates</td>
</tr>
<tr>
<td>Samples with erratic readings</td>
<td>Samples prepared in different buffer</td>
<td>Use the Assay Buffer provided or refer to Technical Bulletin for instructions</td>
</tr>
<tr>
<td></td>
<td>Cell/Tissue culture samples were incompletely homogenized</td>
<td>Repeat the sample homogenization, increasing the length and extent of homogenization step</td>
</tr>
<tr>
<td></td>
<td>Samples used after multiple freeze-thaw cycles</td>
<td>Aliquot and freeze samples if samples will be used multiple times</td>
</tr>
<tr>
<td></td>
<td>Presence of interfering substance in the sample</td>
<td>If possible, dilute sample further</td>
</tr>
<tr>
<td></td>
<td>Use of old or inappropriately stored samples</td>
<td>Use fresh samples and store correctly until use</td>
</tr>
<tr>
<td>Lower/higher readings in samples and standards</td>
<td>Improperly thawed components</td>
<td>Thaw all components completely and mix gently before use</td>
</tr>
<tr>
<td></td>
<td>Use of expired kit or improperly stored reagents</td>
<td>Check the expiration date and store the components appropriately</td>
</tr>
<tr>
<td></td>
<td>Allowing the reagents to sit for extended times on ice</td>
<td>Prepare fresh reaction mix before each use</td>
</tr>
<tr>
<td></td>
<td>Incorrect incubation times or temperatures</td>
<td>Refer to Technical Bulletin and verify correct incubation times and temperatures</td>
</tr>
<tr>
<td></td>
<td>Incorrect volumes used</td>
<td>Use calibrated pipettes and aliquot correctly</td>
</tr>
<tr>
<td>Non-linear standard curve</td>
<td>Use of partially thawed components</td>
<td>Thaw and resuspend all components before preparing the reaction mix</td>
</tr>
<tr>
<td></td>
<td>Pipetting errors in preparation of standards</td>
<td>Avoid pipetting small volumes</td>
</tr>
<tr>
<td></td>
<td>Pipetting errors in the Reaction Mix</td>
<td>Prepare a master Reaction Mix whenever possible</td>
</tr>
<tr>
<td></td>
<td>Air bubbles formed in well</td>
<td>Pipette gently against the wall of the plate well</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Refer to the standard dilution instructions in the Technical Bulletin</td>
</tr>
<tr>
<td></td>
<td>Calculation errors</td>
<td>Recheck calculations after referring to Technical Bulletin</td>
</tr>
<tr>
<td></td>
<td>Substituting reagents from older kits/lots</td>
<td>Use fresh components from the same kit</td>
</tr>
<tr>
<td>Unanticipated results</td>
<td>Samples measured at incorrect wavelength</td>
<td>Check the equipment and filter settings</td>
</tr>
<tr>
<td></td>
<td>Samples contain interfering substances</td>
<td>If possible, dilute sample further</td>
</tr>
<tr>
<td></td>
<td>Sample readings above/below the linear range</td>
<td>Concentrate or dilute samples so readings are in the linear range</td>
</tr>
</tbody>
</table>

KVG,LS,MAM 05/17-1

©2017 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA-ALDRICH is a trademark of Sigma-Aldrich Co. LLC, registered in the US and other countries. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma Aldrich website at www.sigmaaldrich.com and/or on the reverse side of the invoice or packing slip.