Isolated Mitochondria Staining Kit

Product Number CS0760
Storage Temperature –20 °C

Product Description
Mitochondria, the site of most energy production in eukaryotic cells, have a double membrane structure: an outer membrane and a folded inner membrane. Across the inner membrane of intact mitochondria there is a voltage gradient (membrane potential = Δψ) with the inside negative and the outside positive. Mitochondrial membrane potential dissipation is known to be an early event in apoptosis. Thus, an effective distinction between apoptotic and healthy cells can be achieved by measuring the inner membrane potential. This can be done by observing the uptake of the cationic carbocyanine dye JC-1 into the mitochondrial matrix, according to the membrane potential. In healthy cells, this dye concentrates in the matrix, where it forms bright red fluorescent agglomerates. Any event that dissipates the mitochondrial membrane potential prevents the accumulation of the JC-1 dye in the mitochondria and thus, the dye is dispersed in the cytoplasm, leading to a shift from red (agglomerated JC-1) to green fluorescence (JC-1 monomers).

This kit enables a fast and simple staining of isolated mitochondria from animal tissues and cell lines. It includes valinomycin, a mitochondrial membrane-dissipating agent, for control experiments.

Reagents and Equipment Required but Not Provided
- Ultrapure water (17 MΩ-cm or equivalent)
- Mitochondria Isolation Kits (For tissues - Product Code MITOISO1 and for cells - Product Code MITOISO2)
- Fluorimeter cuvettes (Product Code C0793) or 96 well plates (Product Code P8741)
- Fluorimeter

Precautions and Disclaimer
The kit is for R&D use only, not for drug, household or other uses. Please refer to the Material Safety Data Sheet (MSDS) for information regarding hazards and safe handling practices.

Valinomycin is highly toxic. Avoid contact with the skin and eyes.

Preparation Instructions

Isolated Mitochondria
Prepare isolated mitochondria according to the Mitochondria Isolation Kit protocol (For tissues - Product Code MITOISO1 and for cells - Product Code MITOISO2). The initial protein concentration for the staining procedure should be 0.1-1 mg/ml (1 mg/ml is preferred) for assays performed in 96 well plates or 2-20 mg/ml for assays performed in cuvettes.

JC-1 Stain
Dissolve the contents of the vial of JC-1 Stain (Product Code J4519) in 25 µl of DMSO, vortexing vigorously. Make sure the dye is completely dissolved. Store the JC-1 Stock Solution (1 mg/ml) at –20 °C, preferably in working aliquots. Before use, prepare the JC-1 Working Solution (0.2 mg/ml) by diluting the JC-1 Stock Solution 5-fold with DMSO. Keep the JC-1 Working Solution at room temperature.

Note: JC-1 is extremely sensitive to light and should be protected from light at all stages of its preparation.
1X JC-1 Assay Buffer
Dilute an aliquot of the JC-1 Assay Buffer 5x (Product Code J4394) 5-fold with water. Keep the diluted buffer at 4 °C before use. The concentrated buffer may be refrozen.

Valinomycin Working Solution
Before use, dilute an aliquot of the Valinomycin Ready Made (1 mg/ml, Product Code V3639) 10-fold in DMSO to 0.1 mg/ml.

Storage
The kit is shipped on dry ice and stored at –20 °C.

Procedure
Fluorimeter analysis
a. Prepare a JC-1 Staining Solution – Immediately before starting the assay, dilute the JC-1 Working Solution (0.2 mg/ml) 1:1000 in 1X JC-1 Assay Buffer to a final concentration of 0.2 μg/ml. Keep the JC-1 Staining Solution on ice for 15-20 minutes to allow the dye to dissolve.

b. For a control assay, add valinomycin to the mitochondrial sample to a final concentration of 0.5 μg/ml (200-fold dilution of the Valinomycin Working Solution). Keep the mitochondrial sample containing valinomycin on ice for ~10 minutes to allow complete dissipation of the membrane potential.

The procedure was performed using a Perkin-Elmer LS 50 B fluorimeter (excitation wavelength = 490 nm; slit = 5 nm, emission wavelength = 590 nm; slit = 7.2 nm) and a BIO-TEK (Synergy HT) plate reader (excitation wavelength = 485 nm, emission wavelength = 590 nm, sensitivity = 100). If a 490 nm filter is not available, the excitation may be performed in the range of 475-520 nm.

I. Assay in cuvettes
The following assay is designed for a 2 ml assay reaction volume in 4 ml cuvettes
1. Add 1.8 ml of the JC-1 Staining Solution to a 4 ml fluorimeter cuvette.
2. Add a volume (up to 200 μl) of the isolated mitochondrial sample equivalent to 10-100 μg of protein (100 μg is preferred) and mix by inversion.
3. If required, bring the total reaction volume to 2 ml with JC-1 Staining Solution. Mix by inversion.
4. Read the fluorescence of the sample in a fluorimeter using time-drive method with the following settings:
 Excitation wavelength = 490 nm
 Emission wavelength = 590 nm
5. For assaying the valinomycin treated mitochondrial control sample, repeat steps 1-4 with the valinomycin treated sample.

II. Assay in 96 well plate
This assay is designed for a total volume of 100 μl.
1. Add 90 μl of the JC-1 Staining Solution per well.
2. Add a volume (up to 10 μl) of the isolated mitochondrial sample or valinomycin treated mitochondrial sample equivalent to 0.5-5 μg of protein (5 μg is preferred) per well.
3. If required, bring the total reaction volume to 100 μl with JC-1 Staining Solution.
4. Read the fluorescence of the sample in a fluorimeter using time-drive method with settings as follows:
 Excitation wavelength = 490 nm
 Emission wavelength = 590 nm

See Appendix, Figure 1 for typical results with this kit of mitochondria staining using a multiwell plate.

Fluorescence microscopy
JC-1 aggregates in the intact mitochondria can be visualized as bright red staining using standard broad-pass filters that are used routinely for propidium iodide or Cy™3 visualization.

Trouble Shooting
1. If the fluorimeter used does not support time-drive assays, an end point measurement may be used. In this case, it is important to run a valinomycin control sample. For an end point assay, follow steps 1-2 in the protocol. Then incubate the cuvette/plate containing the sample and the dye for 7-10 minutes (the time required to reach uptake saturation) in the dark at room temperature and measure the fluorescence (excitation = 490 nm, emission = 590 nm).
2. If the apparatus does not include a 490 nm filter, the excitation may be performed in the range of 475-520 nm.
3. In order to monitor real-time membrane dissipation, the valinomycin can be added directly to the assay sample (final concentration of 0.5 μg/ml) during the fluorescence measurement, after reaching uptake saturation.
4. If the signal is off scale (too high or too low), consider adjusting the slit width or the sensitivity accordingly.

5. If the uptake signal is not sufficient:
 - Use a fresh aliquot of the 1 mg/ml JC-1 Stock Solution and make sure that the dye is completely dissolved.
 - Calibrate the assay using different concentrations of isolated mitochondrial protein. The volume of the assay sample should not exceed 10% of the total reaction volume.

References

Cy is a trademark of Amersham Pharmacia Biotech, UK Ltd.

Appendix

Figure 1.
Typical Mitochondria Staining using JC-1 Stain in a Multiwell Plate Format

![JC-1 staining assay](image)

RFU – Relative Fluorescence units.
Mitochondria were isolated from CHO cells using the Cell Mitochondria Isolation Kit (Product Code MITOISO2) and stained in a multiwell plate using the Isolated Mitochondria Staining Kit. The upper line represents the JC-1 dye uptake of an intact mitochondrial sample. The lower line represents the dye uptake of the valinomycin treated mitochondrial control sample.

Sigma brand products are sold through Sigma-Aldrich, Inc.
Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.