Nitric Oxide Synthase, Endothelial
Bovine, Recombinant
Expressed in Sf9 insect cells

Product Number N 1533
Storage Temperature −70 °C

Synonyms: NOS III; ecNOS; eNOS; Type III NOS

Product Description
Bovine recombinant eNOS is produced in SF9 cells from a Baculovirus over-expression system. In vivo the enzyme undergoes several post-translational modifications, including myristolation and palmioylation, enabling the protein to be membrane-associated.1

Nitric oxide synthase (NOS) is an enzyme involved in the synthesis of nitric oxide (NO), a free radical generated under physiological conditions by virtually all mammalian cells.2-4 NO is formed from arginine by NOS which oxidizes a guanidino nitrogen of arginine, releasing NO and citrulline. NO is a messenger molecule mediating diverse functions including vasodilatation, neurotransmission, and antimicrobial and anti-tumor activities. In addition, NO has been implicated as a pathogenic mediator in a variety of conditions, such as central nervous system (CNS) disease states, including the animal model of multiple sclerosis (MS) and experimental allergic encephalomyelitis.5

The proteins predicted from the cDNA sequences of NOS isoforms in all species investigated, contain consensus sequences for the binding of NADPH, flavins and calmodulin. The C-terminal half of NOS possesses a high level of homology with NADPH-cytochrome P-450 reductase, where the predicted sites for binding NADPH and flavins are also located. However, the predicted heme and calmodulin binding sites of NOS are located within its N-terminal half. NOS has been localized in many different cell types. On the basis of molecular mass, subcellular location, and Ca2+ dependence, at least three types of NOS have been classified. Type I NOS is found in neurons. It is a 150-160 kD protein, also called NOS-1, neuronal NOS (nNOS), brain NOS (bNOS), cerebral NOS, constitutive NOS or Ca2+-regulated NOS (cNOS). Type II NOS, best characterized in macrophages, is a 130 kD protein, also known as macrophage NOS (mNOS) or inducible NOS (iNOS). Type III NOS is found in endothelial cells. It is a 135 kD protein, also called endothelial NOS (eNOS, or ecNOS). Neuronal and endothelial NOS are constitutively expressed and are dependent on Ca2+/calmodulin for NO production, whereas Type II NOS is Ca2+-independent and is expressed in activated macrophages and some glial cells after stimulation.

Reagent
Recombinant bovine eNOS is supplied as a solution in 50 mM HEPES, pH 7.4, with 10% glycerol, 5 mM CHAPS, and 100 μM DTT.

Precautions and Disclaimer
This product is for laboratory research use only. Please consult the Material Safety Data Sheet for handling recommendations before working with this material.
Storage/Stability
Recombinant bovine eNOS should be stored at or below −70 °C. The solution will be stable for at least 6 months at that temperature. The enzyme loses approximately 10% of its activity after a single freeze-thaw cycle. Therefore, after the initial defrost, it is recommended that the product be stored in single-use aliquots at −70 °C. During use, keep the solution on ice at all times since the enzyme is unstable at higher temperatures.

Product Profile
The activity of recombinant bovine eNOS is determined by an oxyhemoglobin assay that measures the reaction of nitric oxide with oxyhemoglobin to yield methemoglobin. One unit of enzyme produces 1 nmole of nitric oxide per minute at 37 °C in 50 mM HEPES, pH 7.4, containing 5 μM oxyhemoglobin, 1 mM CaCl₂, 20 μg/ml calmodulin, 0.1 mM NADPH, 50 μM arginine, 12 μM tetrahydrobiopterin, and 170 μM DTT.

Recombinant bovine eNOS is a homodimer, each subunit of which has a calculated molecular weight of 135 kDa.

References