ANTI-TISSUE INHIBITOR OF METALLOPROTEINASE-3 (TIMP-3), THIRD LOOP
Developed in Rabbit, Affinity Isolated Antibody

Product Number T 5285

Product Description
Rabbit Anti-TIMP-3, Third Loop is developed in rabbit using a synthetic peptide corresponding to the third loop of human TIMP-3 as immunogen. Affinity isolated antigen specific antibody is obtained from rabbit anti-TIMP-3 antiserum by immuno-specific purification which removes essentially all rabbit serum proteins, including immunoglobulins, which do not specifically bind to the peptide.

Rabbit Anti-TIMP-3, Third Loop specifically binds to TIMP-3 and does not cross-react with the other TIMP family members (TIMP-1, TIMP-2, and TIMP-4). This antibody may be used for the detection and localization of human TIMP-3. By immunoblotting against the reduced protein, the antibody identifies bands at 24 kDa (unglycosylated) and 30 kDa (glycosylated). This antibody also reacts with non-reduced TIMP-3.

The matrix metalloproteinases (MMPs) are a family of at least eighteen secreted and membrane-bound zinc-endopeptidases. Collectively, these enzymes can degrade all the components of the extracellular matrix (ECM), including fibrillar and non-fibrillar collagens, fibronectin, laminin and basement membrane glycoproteins. In general, a signal peptide, a propeptide, and a catalytic domain containing the highly conserved zinc-binding site characterizes the structure of the MMPs. In addition, fibronectin-like repeats, a hinge region, and a C-terminal hemopexin-like domain allow categorization of MMPs into the collagenase, gelatinase, stromelysin and membrane-type MMP subfamilies. MMPs contain the motif His-Glu-X-X-His (X represents any amino acid) that binds zinc in the catalytic site, as well as another zinc molecule and two calcium molecules structurally. They fall within the matrixin subfamily and are EC designated 3.4.24.x. This group also contains astacin, reprolysin, and serralysin, as well as other more divergent metalloproteinases. All MMPs are synthesized as proenzymes, and most of them are secreted from the cells as proenzymes. Thus, the activation of these proenzymes is a critical step that leads to extracellular matrix breakdown.

MMPs are considered to play an important role in wound healing, apoptosis, bone elongation, embryo development, uterineinvolution, angiogenesis, and tissue remodeling, and in diseases such as multiple sclerosis, Alzheimer’s, malignant gliomas, lupus, arthritis, periodontitis, glomerulonephritis, atherosclerosis, tissue ulceration, and in cancer cell invasion and metastasis. Numerous studies have shown that there is a close association between expression of various members of the MMP family by tumors and their proliferative and invasive behavior and metastatic potential.

The tissue inhibitors of metalloproteinases (TIMPs) are naturally occurring proteins that specifically inhibit matrix metalloproteinases and regulate extracellular matrix turnover and tissue remodeling by forming tight-binding inhibitory complexes with the MMPs. Thus, TIMPs maintain the balance between matrix destruction and formation. An imbalance between MMPs and the associated TIMPs may play a significant role in the invasive phenotype of malignant tumors.

The TIMP proteins share several structural features including six loops held in place by six disulfide bonds arranged in three knotlike structures. These proteins also contain twelve cysteine residues in conserved regions of the molecule that form six disulfide bonds, essential for the formation of native conformations, and the N-terminal region that is necessary for inhibitory activities. The N-terminus of each TIMP contains a consensus sequence (VIRAK) and each TIMP is translated with a 29 amino acid leader sequence that is cleaved off to produce the mature protein. The C-terminal regions are divergent, which may enhance the selectivity of inhibition and binding efficiency. Although the TIMP proteins share high homology, they may either be secreted extracellularly in soluble form (TIMP-1, TIMP-2 and TIMP-4) or bind to extracellular matrix components (TIMP-3).
The MMPs and TIMPs can be divided into two groups with respect to gene expression: the majority exhibit inducible expression and a small number are produced constitutively or are expressed at very low levels and are not inducible. Among agents that induce MMP and TIMP production are the inflammatory cytokines TNF-α and IL-1β. A marked cell type specificity is a hallmark of both MMP and TIMP gene expression (i.e., a limited number of cell types can be induced to make these proteins).

Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) was first purified from chicken embryo fibroblasts and identified as ChIMP-3. The human homolog, TIMP-3, was originally detected as serum inducible protein in WI-38 fibroblasts. TIMP-3 is insoluble and binds to the ECM by a variety of cell types and is widely distributed throughout the body. TIMP-3 shows 30% amino acid homology with TIMP-1 and 38% homology with TIMP-2.

TIMP-3 has been shown to promote the detachment of transformed cells from ECM and to accelerate morphological changes associated with cell transformation. Furthermore, up-regulation of TIMP-3 has been associated with a block in the G1 phase of the cell cycle during differentiation of HL-60 leukemia cells.

Reagent
Rabbit Anti-TIMP-3, Third Loop is supplied in 0.01 M phosphate buffered saline, pH 7.4, containing 50% glycerol and 0.1% sodium azide. The protein concentration is approximately 1 mg/ml.

Precautions and Disclaimer
Due to the sodium azide content a material safety data sheet (MSDS) for this product has been sent to the attention of the safety officer of your institution. Consult the MSDS for information regarding hazards and safe handling practices.

Storage/Stability
For continuous use, store at 2 °C to 8 °C for up to six months. For extended storage, the solution may be stored 0 °C to −20 °C. The antibody is supplied with 50% glycerol to prevent freezing. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use.

Product Profile
A working dilution of 1:1,000 is determined by immunoblotting using a whole cell extract from human fibroblasts, an alkaline phosphatase conjugated secondary antibody and BCIP/NBT as the substrate. Higher antibody concentrations may be necessary for non-human samples.

Note: TIMP-3 is produced in low (pg/ml) levels by most cell types, and appears to be preferentially secreted into the ECM. In immunoblotting and reverse zymogen analysis, an ECM preparation is most often used, but a total cell lysate can also be used.

In order to obtain best results and assay sensitivity in different techniques and preparations we recommend determining optimum working dilutions by titration assay.

References