Product Information

CK1δ, active, GST-tagged, human PRECISIO® Kinase recombinant, expressed in Sf9 cells

Catalog Number SRP5014
Storage Temperature –70 °C

Synonyms: CSNK1D, HCKID

Product Description
CK1δ is a member of the CK1 family of serine/threonine protein kinases, which play an important role in diverse cell processes, including DNA replication and repair. CK1δ is a regulator of Yes-associated protein (YAP) transcription coactivator, which is a key regulator of organ size and a candidate human oncogene. CK1δ is activated by CCK2R and this then phosphorylates PKD2 at Ser244. Phosphorylation of PKD2 leads to its nuclear accumulation and efficient phosphorylation of nuclear PKD2 substrates in human gastric cancer cells.1 CKIδ can phosphorylate in vitro deoxycytidine kinase (dCK), which is a key enzyme in the salvage of deoxynucleosides. Phosphorylation of dCK by CKIδ in vitro correlates with increased activity of this enzyme.2

Full length recombinant human CK1δ was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM_001893. Recombinant protein stored in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM glutathione, 0.1 mM EDTA, 0.25 mM DTT, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ~72 kDa

Purity: 70–95% (SDS-PAGE, see Figure 1)

Specific Activity: 70–94 nmole/min/mg (see Figure 2)

Precautions and Disclaimer
This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability
The product ships on dry ice and storage at –70 °C is recommended. After opening, aliquot into smaller quantities and store at –70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1. SDS-PAGE Gel of Typical Lot 70–95% (densitometry)

Figure 2. Specific Activity of Typical Lot 70–94 nmole/min/mg

Procedure
Preparation Instructions
Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl2, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/µl BSA and 5% glycerol solution.
Kinase Solution – Dilute the active CK1δ (0.1 µg/µl) with Kinase Dilution Buffer to the desired concentration. **Note:** The specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active CK1δ kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 µl aliquots at –20 °C.

γ-33P-ATP Assay Cocktail (250 µM) – Combine 5.75 ml of Kinase Assay Buffer, 150 µl of 10 mM ATP Stock Solution, 100 µl of γ-33P-ATP (1 mCi/100 µl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Casein, Dephosphorylated, a protein substrate, was diluted in distilled water to a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay
This assay involves the use of the 33P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

1. Thaw the active CK1δ, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ-33P-ATP Assay Cocktail may be thawed at room temperature.
2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 µl:
   - 10 µl of Kinase Solution
   - 5 µl of Substrate Solution
   - 5 µl of cold water (4 °C)
3. Set up a blank control as outlined in step 2, substituting 5 µl of cold water (4 °C) for the Substrate Solution.
4. Initiate each reaction with the addition of 5 µl of the γ-33P-ATP Assay Cocktail, bringing the final reaction volume to 25 µl. Incubate the mixture in a water bath at 30 °C for 15 minutes.
5. After the 15 minute incubation, stop the reaction by spotting 20 µl of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.
6. Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
7. Set up a radioactive control to measure the total γ-33P-ATP counts introduced into the reaction. Spot 5 µl of the γ-33P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:
1. Specific Radioactivity (SR) of ATP (cpm/nmole)
   \[ SR = \frac{\text{cpm of 5 µl of } \gamma^{33}\text{P-ATP Assay Cocktail}}{\text{nmole of ATP}} \]
2. Specific Kinase Activity (SA) (nmole/min/mg)
   \[ \text{nmole/min/mg} = \frac{\Delta\text{cpm} \times (25/20)}{\text{SR} \times E \times T} \]

References
1. Von Blume, J. et al., Phosphorylation at Ser\(^{244}\) by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J., 26(22), 4619-33 (2007).

PRECISIO is a registered trademark of Sigma-Aldrich Co. LLC.