New Product Highlights

Celltransmissions

Anti-Potassium Channel KCNK9 (TASK-3)

Prod. Code: K 0514

Clone Name: KCN, developed in mouse

Product Form: Purified mouse immunoglobulin

Immunogen: Synthetic peptide corresponding to amino acids 360-374 in the C-terminus of human KCNK9

Isotype: IgG2b

Species Cross Reactivity: human

KCNK9 or TASK-3 (TWIK-related Acid sensitive K+ channel, K2P9.1) is a member of the potassium channel family of proteins that contain two-pore domains and four transmembrane domains. These channels are characterized as leaky K+ channels that are sensitive to changes in the extracellular pH. The physiological functions of TASK channels are largely unknown. It has been proposed that they may be involved in the regulation of breathing, aldosterone secretion and anesthetic-mediated neuronal activity. [1-4].

Applications: Immunoblotting, immunocytochemistry, ELISA

References

Monoclonal Anti-Potassium Channel KCNK9 (Intermediate-conductance Ca2+-activated K+ channel inhibitor)

Prod. Code: T 6700

Used to prevent vascular restenosis following balloon angioplasty. Displays a 100-fold selectivity (Kd = 20 nM) for IKCa1 channels over other K+ channels (Charybdotoxin, Kd = 5 nM, Clotrimazole, Kd = 70 nM; Nitrendipine Kd = 900 nM).

Related Products

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Description</th>
<th>Prod. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charybdotoxin</td>
<td>Ca2+-activated K+ channel inhibitor</td>
<td>C 5856</td>
</tr>
<tr>
<td>NS309</td>
<td>Intermediate-conductance Ca2+-activated K+ channel activator</td>
<td>N 8161</td>
</tr>
<tr>
<td>Anti-Potassium Channel KCa3.1 (Intermediate-conductance Ca2+-activated K+ Channel 4) (rabbit)</td>
<td>P 4997</td>
<td></td>
</tr>
</tbody>
</table>

TRAM-34: Potent intermediate-conductance Ca2+-activated K+ channel blocker

Prod. Code: T 6700

Used to prevent vascular restenosis following balloon angioplasty. Displays a 100-fold selectivity (Kd = 20 nM) for IKCa1 channels over other K+ channels (Charybdotoxin, Kd = 5 nM, Clotrimazole, Kd = 70 nM; Nitrendipine Kd = 900 nM).

References

Anti-Potassium Channel KCa3.1 (Intermediate-conductance Ca2+-activated K+ Channel 4)

Prod. Code: K 0514

Clone Name: KCN, developed in mouse

Product Form: Purified mouse immunoglobulin

Immunogen: Synthetic peptide corresponding to amino acids 360-374 in the C-terminus of human KCNK9

Isotype: IgG2b

Species Cross Reactivity: human

Anti-Potassium Channel KCa3.1 (Intermediate-conductance Ca2+-activated K+ Channel 4) is a member of the potassium channel family of proteins that contain two-pore domains and four transmembrane domains. These channels are characterized as leaky K+ channels that are sensitive to changes in the extracellular pH. The physiological functions of TASK channels are largely unknown. It has been proposed that they may be involved in the regulation of breathing, aldosterone secretion and anesthetic-mediated neuronal activity. [1-4].

Applications: Immunoblotting, immunocytochemistry, ELISA

References

Anti-Frizzled (FZD) Antibodies

Prod. Code: See table below

Product Form: Developed in rabbit, affinity isolated antibodies

Immunogen: Synthetic peptides

Species Cross Reactivity: human

Wnt-Frizzled signaling is an essential component of early development regulating cell fate, polarity, differentiation, migration, formation of neural synapses and the regulation of proliferation. Frizzled proteins are GPCRs for secreted Wnt proteins, as well as other ligands. They have been identified in a range of animal species, from sponges to humans [1,2]. Wnt1 is an oncogene that causes mouse mammary tumorigenesis. Defective Wnt signaling plays major roles in diseases such as cancer (for example, colorectal cancer and melanomas) and osteoporosis [3]. Therefore, Wnt signal transduction components represent promising targets in the search for novel cancer therapeutic agents.

Applications: Immunohistochemistry

References

Related Products

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Host</th>
<th>Prod. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Frizzled-1 (FZD-1)</td>
<td>Rabbit</td>
<td>F 3804</td>
</tr>
<tr>
<td>Anti-Frizzled-2 (FZD-2)</td>
<td>Rabbit</td>
<td>F 3304</td>
</tr>
<tr>
<td>Anti-Frizzled-3 (FZD-3)</td>
<td>Rabbit</td>
<td>F 3179</td>
</tr>
<tr>
<td>Anti-Frizzled-4 (FZD-4)</td>
<td>Rabbit</td>
<td>F 3429</td>
</tr>
<tr>
<td>Anti-Frizzled-7 (FZD-7)</td>
<td>Rabbit</td>
<td>F 3679</td>
</tr>
<tr>
<td>Anti-Frizzled-10 (FZD-10)</td>
<td>Rabbit</td>
<td>F 3554</td>
</tr>
</tbody>
</table>

Anti-Frizzled-1 (FZD-1) Rabbit

PD 81,723: Allosteric enhancer of agonist binding to A1 adenosine receptors

Prod. Code: P 1123

PD 81,723 (30 μM) decreases the EC50 value for adenosine to prolong the S-H interval by nine-fold in guinea pig isolated heart; 3 mg/kg enhances the neuroprotective and anticonvulsant effects of adenosine following the induction of hyperglycemic ischemia in rats.

References