Pyrophosphatase, inorganic from baker’s yeast (S. cerevisiae)

Product Number: I 1643
Storage Temperature: -0 °C

Product Description
Enzyme Commission (EC) Number: 3.6.1.1
CAS Number: 9024-82-2
Molecular Weight: 71 kDa
Extinction Coefficient: E\textsubscript{1%} = 14.5 (280 nm)
pI: 4.75
Synonyms: Inorganic Pyrophosphatase, PPi, Pyrophosphate phosphohydrolase

Inorganic pyrophosphatase from baker’s yeast is a homodimer consisting of two equal subunits of molecular weight 32-35 kDa.2,3
Inorganic pyrophosphatase catalyzes the following reaction:

\[
\text{Pyrophosphate} + \text{H}_2\text{O} \rightarrow 2\text{- Orthophosphate}
\]

This ubiquitous enzyme serves to drive metabolic reactions that produce pyrophosphate, since these reactions typically have equilibrium constants near unity. The catalytic mechanism has been described in the literature.3 Inorganic pyrophosphatase is a metalloprotease that requires Mg2+ for maximal activity. Although the hydrolysis of inorganic pyrophosphate is specific in the presence of Mg2+, both ADP and ATP can be hydrolyzed if zinc is present. The following metals can act as activators: Mg2+ > Zn2+ > Co2+ > Mn2+ > Ca2+.2,3,4

Inorganic pyrophosphatase from yeast is strongly inhibited by EDTA.4

Precautions and Disclaimer
For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions
The lyophilized powder contains approximately 85% buffer salts (Tris, citric acid and magnesium chloride). This product is soluble in deionized water (2 mg/ml), yielding a clear and colorless solution.

Storage/Stability
A frozen solution containing Mg2+ is stable for at least one year at -20 °C.

References

TMG/RXR 12/03