2,6-Diaminopurine hemisulfate salt

Product Number D 3289
Store at Room Temperature

Product Description
Molecular Formula: C₅H₆N₆ • ½ H₂SO₄
Molecular Weight: 199.2
CAS Number: 69369-16-0
Melting Point: 302 °C¹
λmax: 241 nm, 282 nm (pH 1.9);² 247 nm, 280 nm (0.1 M phosphate, pH 7.0)²
Extinction Coefficient: E₅₀₀ = 9.55 (241 nm),
10 (282 nm) (pH 1.9);¹ 7.57 (247 nm), 9.05 (280 nm)
(0.1 M phosphate, pH 7.0)²
Synonyms: DAP hemisulfate; 2-aminoadenine
hemisulfate; 1H-purine-2,6-diamine hemisulfate;
2,6-diamino-9H-purine hemisulfate¹

2,6-Diaminopurine is an adenine analogue that is an
antagonist of naturally occurring purines.¹ DAP can
base pair with thymidine in DNA, and with uracil in
RNA, to give three Watson-Crick hydrogen bonds.
This alteration in base pairing properties has led to
the use of DAP as a structural probe of molecular
recognition between ligands and DNA.²

DAP has been incorporated into anhydrohexitol
nucleosides for the preparation of heptitols nucleic
acids, and subsequent hybridization studies with DNA
and RNA.⁴ Ligase ribozymes that contain DAP and
uracil have been prepared by in vitro evolution, and
have been found to catalyze the template-directed
joining of two RNA molecules.⁵ A DAP moiety has
been incorporated in the synthesis of various
L-β-(2S,4S)- and L-α-(2S,4R)-dioxolanyl nucleosides
as potential anti-HIV compounds.⁶

The cyanophage S-2L is capable of using DAP in
place of adenine in its DNA.⁷ Salmonella typhimurium
is also able to utilize DAP as a purine source.⁸

Precautions and Disclaimer
For Laboratory Use Only. Not for drug, household or
other uses.

Preparation Instructions
This product is soluble in formic acid (50 mg/ml), with
heat as needed, yielding a clear to hazy, yellow to
yellow-green solution.

References
1. The Merck Index, 12th ed., Entry# 3028.
2. Montgomery, J. A., Holm, L. B., Synthesis of
Potential Anticancer Agents. XI. N²⁶-Alkyl
Derivatives of 2,6-Diaminopurine. J. Am. Chem.
3. Bailly, C., and Waring, M. J., The use of
diaminopurine to investigate structural properties
between ligands and DNA. Nucleic Acids Res.,
4. Boudou, V., et al., Base pairing of anhydrohexitol
nucleosides with 2,6-diaminopurine,
5-methylcytosine and uracil asbase moiety.
5. Reader, J. S., and Joyce, G. F., A ribozyme
composed of only two different nucleotides.
6. Kim, H. O., et al., L-β-(2S,4S)- and L-α-(2S,4R)-
dioxolanyl nucleosides as potential anti-HIV
agents: asymmetric synthesis and structure-
519-528 (1993).
7. Kirnos, M. D., et al., 2-aminoadenine is an adenine
substituting for a base in S-2L cyanophage DNA.
8. Garber, B. B., and Gots, J. S., Utilization of
2,6-diaminopurine by Salmonella typhimurium.