Innovative particle and column technology for the high throughput LC-MS analysis of biomolecules

Atis Chakrabarti, Ph.D.
Technical Service Specialist
Sample Characteristics and Mode of Chromatography

- Size (Molecular Weight)
- Molecular Charge
- Hydrophobic Regions
- Conformational Recognition Sites
- Size Exclusion
- Anion Exchange
- Cation Exchange
- Ion Pair
- Normal Phase
- Reversed Phase
- Hydrophobic Interaction
- Affinity
- Chiral
Liquid Chromatography and Mass Spectrometry

• Liquid chromatography
 ▪ Fundamental separation technique in bioscience, chemistry and related field
 ▪ Suitable for nonvolatile compounds
 ▪ Suitable for compounds prone to breakdown at high temperature
 ▪ Widely used for small molecules and macromolecules

• Mass spectrometry
 ▪ Signal strength
 ▪ Mass
Advantages of Mass Spectrometry

- High sensitivity
- High specificity
- Doesn’t need a chromophore in the analytes
- Able to analyze poorly resolved peaks also

Liquid chromatography coupled with mass spectrometry, is a very useful analytical tool not only for identification but also for quality control purpose in qualitative and quantitative analyses.

Mass spectrometry is used in forensic toxicological analysis.
Factors in analysis – a puzzle
Concerns for LC-MS

- Concentration of the sample

- Mobile phase compatibility
 - select the solvents and buffers carefully.

- Interference coming from mobile phase or sample preparation with regards to ionization and signal strength need to be optimized

- The column
Advantages of small particle size columns

● Higher efficiency
 ▪ Shorter diffusion path length through the particles

● Increased resolution

● Optimization of the extra-column components can significantly improve column performance.
 ▪ Reduce ID capillary tubing, detector cell volume
 ▪ Select a fast detector response time
 ▪ Reduce sample injection volume (≤ 2mm ID)
SEM of HPLC Column Packing materials

(3μm) (4μm) (6μm)
Advantages of small particle size columns

● Smaller particles are more efficient

 ▪ at the expense of higher back pressure compared to columns packed with larger particles.

 ▪ usually traded off by reducing column length
 o shorter analysis times
 o lower column back pressure

● Three micron packed columns are now a common tool in many LC-MS applications.
Bonded phase of HILIC Column

- Polar stationary phase similar to normal phase
- Mobile phase similar to reversed phase (high % organic)
- Elution in order of increasing hydrophilicity

TSKgel Amide-80
TSKgel NH₂-100
Bonded phase structure in Ion Exchange chromatography

TSKgel STAT columns

- Very efficient chromatography
 - for high as well as low MW solutes
 - novel bonding chemistry and the absence of micro-pores
- High speed and high resolution analysis of biomolecules
- Higher adsorption capacities and lower pressures compared with competitive non-porous columns
- 7 or 10µm particles for SP and CM chemistries
Bonded phases in Reversed phase Chromatography

Three micron packed TSKgel ODS-100V and ODS-100Z columns are effective tools to increase throughput and improve precision in LC-MS applications.
Bonded phases in Hydrophobic Interaction Chromatography (HIC)
Monoclonal antibodies (mAbs) have a MW of about 150,000 and would fall here on the calibration curves. Most of our customers use TSKgel G3000SW and TSKgel G3000SWxl columns for their mAb analysis.
Gel Filtration Chromatography (GFC) Column Selection

Molecular mass separation ranges (Da) of TSKgel SW_{XL} Series

<table>
<thead>
<tr>
<th>Column</th>
<th>Polyethylene glycol (linear)</th>
<th>Dextran (branched)</th>
<th>Protein (globular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2000SW<sub>XL</sub></td>
<td>500~15,000</td>
<td>1,000~30,000</td>
<td>5,000~100,000</td>
</tr>
<tr>
<td>G3000SW<sub>XL</sub></td>
<td>1,000~35,000</td>
<td>2,000~70,000</td>
<td>10,000~500,000</td>
</tr>
<tr>
<td>G4000SW<sub>XL</sub></td>
<td>2,000~250,000</td>
<td>4,000~500,000</td>
<td>20,000~7,000,000</td>
</tr>
</tbody>
</table>
Proteins (general)
Select appropriate pore size based on knowledge or estimate of protein MW

Protein of unknown molecular weight
TSKgel G3000SW$_{XL}$
Ideal investigational column (Scouting column)

If peak elutes near the exclusion volume
Switch to TSKgel G4000SW$_{XL}$

If peak elutes near the end of the chromatogram
Switch to TSKgel G2000SW$_{XL}$
Analysis of purified mAb

Both runs are at same linear velocity

Mobile phase: 0.1mol/L Phosphate buffer (mono/dibasic), 0.1mol/L NaCl, 0.05% NaN₃, pH 6.8; Flow rate: 1mL/min; Detection: UV@280nm (micro flow cell); Injection volume: 5µL
Dependence of HETP on sample load

Sample: Bovine Serum Albumin (BSA)

~250µg
The Characterization of Biological Samples by Microbore TSKgel SuperSW3000 SEC Columns

Column:
TSKgel SuperSW3000 microbore, 1mm ID

• excellent choice for the rapid separation of proteins and enzymes at micro scale

• a great fit for the trace analysis of biological components by LC-MS.

Fraction of interest analyzed by off-line SELDI/TOF/MS to establish presence of BSA aggregates and IgG
LC/MS Chromatogram (TIC) of β-lactoglobulin Tryptic Digest

In this analysis we have used a highly consistent and chemically stable silica-based octadecylsilane stationary phase (TSKgel Super-ODS column) for LC-MS
TSKgel Super Series Columns

• Increased efficiency

• Reduction in analysis time

• Higher resolution

• TSKgel Super Series columns are available in:
 ▪ 1, 2, or 4.6mm ID
 ▪ 5 or 10cm length

• These ultra efficient columns are coupled with the specificity of Mass Spec, which results in superior analytical power.
Three micron packed TSKgel ODS-100V and ODS-100Z columns are effective tools to increase throughput and improve precision in LC-MS applications.
Rapid Identification of 20 Peptides

- Unwanted secondary ionic interactions from residual silanols can be eliminated by adding trifluoroacetic acid (TFA) to the mobile phase.

- The use of “mass-spec friendly TFA” eliminates extra steps involved with removing salts or non-volatile acids required by amino-bonded columns to eliminate ionic interactions.
Low level of background noise (indication of low bleeding) was observed in the total ion chromatogram (TIC) for LC/ESI/MS using an acidic mobile phase containing 0.1% formic acid with a gradient elution method. No sample was injected.

This data suggests that TSKgel ODS-100V, 3µm columns are well suited for LC-MS applications.
Bonded Phase HILIC Columns

- Polar stationary phase similar to normal phase
- Mobile phase similar to reversed phase (high organic)
- Elution in order of increasing hydrophylicity

TSKgel Amide-80
TSKgel NH₂-100
Both can be used for with evaporative light scattering (ELS) and mass spec (MS) detectors.

The **3μm material** – for use in LC/MS applications for the analysis of active pharmaceutical ingredients and their metabolites.
TSKgel NH$_2$-100 - Expanded HILIC Selectivity

Columns: TSKgel NH2-100, 3µm, 4.6mm ID x 15cm
TSKgel Amide-80, 3µm, 4.6mm ID x 15cm
Eluent: H$_2$O/ACN=10/90–90/10 (vol.%)
Flow rate: 1.0mL/min
Temp: 40ºC
Detector: RI
Sample: inositol
Injection vol.: 10µL
Identification of Isobaric Glycoforms by Retention Time (Glycobase) and MS/MS Experiments

Protein construct of the zp domain of murine tgifr-3 expressed in HEK293EBNA
Separations of 2-AB Labeled N-glycans

Fluorescence chromatograms of HILIC separations of 2-AB labeled N-glycans released from the recombinant ZP domain construct of murine TGFR-3, were compared to the dextran ladder.

<table>
<thead>
<tr>
<th>CHROMATOGRAPHIC PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column: TSKgel Amide-80 3 µm (2 mm ID x 15 cm L)</td>
</tr>
<tr>
<td>HPLC: Shimadzu Prominence</td>
</tr>
<tr>
<td>Flow rate: 0.22 mL/min</td>
</tr>
<tr>
<td>Mobile phase: A: 50 mM ammonium formate (pH 4.3) B: acetonitrile</td>
</tr>
<tr>
<td>Gradient: 0 - 35 min: 75 - 35 % B</td>
</tr>
<tr>
<td>Temperature: 50 °C</td>
</tr>
<tr>
<td>Detection: Fluorescence; excitation @ 360 nm, emission @ 425 nm</td>
</tr>
<tr>
<td>Injection: 2 µL, approximately 300 fmol for GU3 (Figure 3)</td>
</tr>
</tbody>
</table>

The structure analysis was completed by high resolution mass spectra acquired on a MALDI QIT TOF MS instrument.
Separations of 2-AB Labeled N-glycans

Dextran ladder (A) →

PNGaseF digest (B) →

Sequential exoglycosidase digests (C-F) →

Used exoglycosidases:
Sialidase A (Abs),
α-Fucosidase (Bkf),
β-Galactosidase (Btg),
β-N-Acetylhexoamidase (Guh).
MALDI Mass Spectrum of 2-AB-labeled Glycans Released from ZP domain Construct of Murine TGFR3
MS2 (CID) Mass Spectrum of m/z 2243

[M+2Na-H]⁺ = 2242.99
MS3 (CID) Mass Spectrum of m/z 1930
Biogenic Amines in Tuna as Function of Storage

Spd
- 0.6µg/L

His
- 77.4µg/L
- 1.6µg/L

Put
- 3.6µg/L

Tyr
- 5.0µg/L
- 0.1µg/L

Cad
- 11.7µg/L

Trp
- 0.2µg/L
- 0.2µg/L

Stored at room temperature for 2 days
Stored frozen
TSKgel STAT Ion Exchange Columns

- Very efficient chromatography
 - for high as well as low MW solutes
 - novel bonding chemistry and the absence of micro-pores
- High speed and high resolution analysis of biomolecules
- Higher adsorption capacities and lower pressures compared with competitive non-porous columns
- 7 or 10µm particles for SP and CM chemistries
Basic Properties of TSKgel STAT Columns

<table>
<thead>
<tr>
<th></th>
<th>TSKgel Q-STAT</th>
<th>TSKgel SP-STAT</th>
<th>TSKgel CM-STAT</th>
<th>TSKgel DNA-STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base materials</td>
<td>Hydrophilic</td>
<td>Hydrophilic</td>
<td>Hydrophilic</td>
<td>Hydrophilic</td>
</tr>
<tr>
<td></td>
<td>non-porous</td>
<td>non-porous</td>
<td>non-porous</td>
<td>non-porous</td>
</tr>
<tr>
<td></td>
<td>resin</td>
<td>resin</td>
<td>resin</td>
<td>resin</td>
</tr>
<tr>
<td>Particle size</td>
<td>7, 10µm</td>
<td>7, 10µm</td>
<td>7, 10µm</td>
<td>5µm</td>
</tr>
<tr>
<td></td>
<td>(mono-disperse)</td>
<td>(mono-disperse)</td>
<td>(mono-disperse)</td>
<td>(mono-disperse)</td>
</tr>
<tr>
<td>Ligand</td>
<td>Quaternary</td>
<td>Sulfopropyl</td>
<td>Carboxymethyl</td>
<td>Quaternary</td>
</tr>
<tr>
<td>Column dimensions</td>
<td>3.0 x 3.5</td>
<td>3.0 x 3.5</td>
<td>3.0 x 3.5</td>
<td>4.6 x 10</td>
</tr>
<tr>
<td>mm ID x cm</td>
<td>4.6 x 10</td>
<td>4.6 x 10</td>
<td>4.6 x 10</td>
<td>4.6 x 10</td>
</tr>
</tbody>
</table>
Protein Separations on Non-Porous Anion Exchange Columns

Commercial WAX column
4.0mmI.D. x 25cm
Rs = 10.1

TSKgel Q-STAT
4.6mmI.D. x 10cm (7um)
Rs = 15.3

Improved protein peak shapes on TSKgel Q-STAT vs. non-porous WAX column.
In this comparison of protein separations on various cation exchange columns, different selectivities were observed for each set of proteins on all three columns. The TSKgel SP-STAT column shows excellent resolution for cytochrome C and lysozyme.
Fast Protein Separations on Monolithic and Non-Porous Cation Exchange Columns

Commercial monolithic
5.0mm I.D. x 5cm

TSKgel SP-STAT
3.0mm I.D. x 3.5cm (10um)
Separation on Toyopearl GigaCap resins

Structure:

\[
\text{HW-65} \cdot \text{O-} \cdot \text{R'} \cdot \text{SO}_3^- \\
\text{strong cation exchanger}
\]
(Note: \(R'\) = proprietary polymer)

Structure:

\[
\text{HW-65} \cdot \text{O-} \cdot \text{R'} \cdot \text{N}^+ \cdot (\text{CH}_3)_3
\]
(Note: \(R'\) = proprietary)

Product Attributes:

<table>
<thead>
<tr>
<th>Pore size (mean)</th>
<th>1,000\AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (mean)</td>
<td>75\mu m (M-grade)</td>
</tr>
<tr>
<td>Pressure rating</td>
<td>3 bar</td>
</tr>
<tr>
<td>Shipping buffer</td>
<td>20% ethanol</td>
</tr>
<tr>
<td>pH stability</td>
<td>3-13</td>
</tr>
<tr>
<td>Shelf life (estimated)</td>
<td>10 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pore size (mean of base bead)</th>
<th>1,000\AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (mean)</td>
<td>75\mu m (M-grade)</td>
</tr>
<tr>
<td>Pressure rating</td>
<td>3 bar</td>
</tr>
<tr>
<td>Shipping buffer</td>
<td>20% ethanol</td>
</tr>
<tr>
<td>pH stability</td>
<td>3-13</td>
</tr>
<tr>
<td>Shelf life (estimated)</td>
<td>10 years</td>
</tr>
</tbody>
</table>
Toyopearl GigaCap S-650M is the first in a family of ion exchange resins optimized for high throughput chromatography of IgG.

The high capacity for lysozyme shows that Toyopearl GigaCap S-650M will be an excellent resin for smaller proteins as well.

* Toyopearl GigaCap is a registered trademark of Tosoh Corporation
The new Toyopearl GigaCap S-650M resin featured very high binding capacities with excellent binding kinetics and almost quantitative recoveries (data not shown).
Conclusions

- The new surface modifications improve not only chromatographic performance but also are effective tools to increase throughput and improve precision in LC-MS applications.
Innovative particle and column technology for the high throughput LC-MS analysis of biomolecules

Thank You for your attention

Atis Chakrabarti, Ph.D.
Technical Service Specialist