Certain features of will be down for maintenance the evening of Friday August 18th starting at 8:00 pm CDT until Saturday August 19th at 12:01 pm CDT.   Please note that you still have telephone and email access to our local offices. We apologize for any inconvenience.

Biofiles 4.7


  1. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Hanahan, D., and Folkman, J., Cell, 86, 353-64 (1996).
  2. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization (Review). Fukumura, D. and Jain, R.K., Microvasc. Res., 74, 72-84 (2007).
  3. Inhibiting hypoxia-inducible factor 1 for cancer therapy (Review). Melillo, G., Mol. Cancer Res., 4, 601-5 (2006).
  4. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis (Review). Kaur, B., et al., Neuro. Oncol., 7, 134-53 (2005).
  5. Novel agents on the horizon for cancer therapy (Review). Ma, W.W. and Adjei, A.A., CA Cancer, 59, 111-137 (2009).
  6. Targeting tumor angiogenesis with histone deacetylase inhibitors (Review).
    Ellis, L., et al., Cancer Lett., 280, 145-53 (2009).
  7. Role of hypoxia-inducible factor-1α as a cancer therapy target (Review). Patiar, S., and Harris, A.L., Endocr. Relat. Cancer, 13, S61-75 (2006).
  8. Hypoxia signalling through mTOR and the unfolded protein response in cancer (Review). Wouters, B.G. and Koritzinsky, M., Nat. Rev. Cancer, 8, 851-864 (2008).
  9. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. Land, S.C. and Tee, A.R., J. Biol. Chem., 282, 20534-43 (2007).
  10. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Gerber, H.P., et al., J. Biol. Chem., 273, 13313-6 (1998).
  11. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Relf, M., et al., Cancer Res., 57, 963-9 (1997).
  12. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy (Review). Jain, R.K., Science, 307, 58-62 (2005).
  13. Inhibitors of vascular endothelial growth factor in cancer (Review).
    Pourgholami, M.H. and Morris, D.L., Cardiovasc. Hematol. Agents Med. Chem., 6, 343-347 (2008).
  14. A microRNA component of the hypoxic response (Review). Kulshreshtha, R., et al., Cell Death Differ., 15, 667-671 (2008).
  15. Co-evolution of tumor cells and their microenvironment (Review). Polyak, K., et al., Trends Genet., 25, 30-38 (2009).
  16. Drug resistance and the solid tumor microenvironment (Review). Trédan, O., et al., J. Natl. Cancer Inst., 99, 1441-1454 (2008).
  17. Role of the microenvironment in tumor growth and in refractoriness/ resistance to anti-angiogenic therapies (Review). Shojaei, F. and Ferrara, N., Drug Resist. Updat., 11, 219-30 (2008).
  18. Microenvironmental regulation of cancer development (Review). Hu, M. and Polyak, K., Curr. Opin. Genet. Dev., 18, 27-34 (2008).
  19. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Olive, K.P., et al., Science, 324, 1457-1461 (2009).
  20. Tumor-microenvironment interactions: dangerous liaisons (Review). Witz, I.P., Adv. Cancer Res., 100, 203-229 (2008).
  21. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Orimo, A., et al., Cell, 121, 335-348 (2005).
  22. Cancer and the tumor microenvironment: a review of an essential relationship (Review). Mbeunkui, F. and Johann, D.J. Jr., Cancer Chemother. Pharmacol., 63, 571-582 (2009).
  23. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. Devy, L., et al., FASEB J., 16, 147-54 (2002).
  24. Tumor-vascular interactions and tumor dormancy (Review). Naumov, G.N., et al., APMIS, 116, 569-585 (2008).
  25. Cisplatin and doxorubicin repress vascular endothelial growth factor expression and differentially down-regulate hypoxia-inducible factor I activity in human ovarian cancer cells. Duyndam, M.C., et al., Biochem. Pharmacol., 74, 191-201 (2007).
  26. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin.. Satchi-Fainaro, R., et al., Cancer Cell, 7, 251-61 (2005).
  27. Roxithromycin inhibits angiogenesis of human hepatoma cells in vivo by suppressing VEGF production. Aoki, D., et al., Anticancer Res., 25, 133-8 (2005).
  28. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxiainducible factor-1α → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Tsuzuki, Y., et al., Cancer Res., 60, 6248-52 (2000).
  29. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function. Escuin, D., et al., Cancer Res., 65, 9021-8 (2005).
  30. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Mabjeesh, N.J., et al., Cancer Cell, 3, 363-75 (2003).
  31. Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Pourgholami, M.H., et al., Clin. Cancer Res., 12, 1928-35 (2006).
  32. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Izumi, Y., et al., Nature, 416, 279-80 (2002).
  33. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Lee, C.G., et al., Cancer Res., 60, 5565-70 (2000).
  34. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Kozin, S.V., et al., Cancer Res., 61, 39-44 (2001).
  35. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Winkler, F., et al., Cancer Cell., 6, 553-63 (2004).
  36. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Paez-Ribes, M., et al., Cancer Cell, 15, 220-31 (2009).
  37. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Ebos, J.M., et al., Cancer Cell, 15, 232-9 (2009).
  38. Distinct epigenetic changes in the stromal cells of breast cancers. Hu, M., et al., Nat. Genet., 37, 899-905 (2005).
  39. Identification of epigenetically silenced genes in tumor endothelial cells. Debby, M.E.I., et al., Cancer Res., 67, 4138-48 (2007).
  40. Combination strategy targeting the hypoxia inducible factor-1α with mammalian target of rapamycin and histone deacetylase inhibitors. Verheul, H.M., et al., Clin. Cancer Res., 14, 3589-97 (2008).
  41. Modulation of angiogenesis for cancer prevention: strategies based on antioxidants and copper deficiency (Review). Kahn, G.N. and Merajver, S.D., Curr. Pharm. Des., 13, 3584-3590 (2007).
  42. Role of prostaglandin E1 and copper in angiogenesis. Ziche, M., et al., J. Natl. Cancer Inst., 69, 475-82 (1982).
  43. Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NF-κB signaling cascade. Pan, Q., et al., Mol. Cancer Res., 1, 701-6 (2003).
  44. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Boehm, T., et al., Nature, 390, 404-7 (1997).
  45. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Liu, J.J., et al., Int. J. Cancer, 106, 559 (2003).
  46. Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: microarray gene expression analyses. Pfeffer, U., et al., Mutat. Res., 591, 198-211 (2005).
  47. Tumor inflammatory angiogenesis and its chemoprevention (Review). Albini, A., et al., Cancer Res., 65, 10637-41 (2005).
  48. Novel function of ascorbic acid as an angiostatic factor. Ashino, H., et al., Angiogenesis, 6, 259-69 (2003).
  49. Anti-angiogenic activity of a novel class of chemopreventive compounds: oleanic acid terpenoids (Review). Sogno, I., et al., Recent Results Cancer Res., 181, 209-212 (2009).