CVD and ALD Precursors Packaged for Deposition Systems


Nano-layers of metals, semiconducting and dielectric materials are crucial components of modern electronic devices, high-efficiency solar panels, memory systems, computer chips and a broad variety of high-performance tools.1-3

The technique of choice for depositing nano-films on various surfaces is Atomic Layer Deposition (ALD), which uses consecutive chemical reactions on a material’s surface to create nanostructures with predetermined thickness and chemical composition (Figure 1).
Aldrich Materials Science offers high-quality precursors for ALD safely packaged in steel cylinders suitable for use with a variety of deposition systems. They may be used in liquid injection systems as a dilute solution and combined with a variety of other sources to deposit mixed oxides. (Figure 2)

Additional information about other vapor deposition techniques such as physical vapor deposition (PVD) can be found in our physical vapor deposition spotlight.

Click here to watch our video on thin film deposition by ALD methods.

Advanced Precursors for HfO2 and ZrO2 Thin Films

Aldrich Materials Science is proud to offer a series of new precursors for the deposition of hafnium and zirconium oxide by Atomic Layer Deposition (ALD), which have been developed by SAFC Hitech and include:

Bis(methyl-η5-cyclopentadienyl)methoxymethylzirconium- ZrD-CO4 (725471)- Zr(CH3C5H4)2CH3OCH3
Bis(methyl-η5-cyclopentadienyl)dimethylhafnium- HfD-CO2 (725501)- Hf[C5H4(CH3)]2(CH3)2
Bis(methyl-η5-cyclopentadienyl)methoxymethylhafnium- HfD-CO4 (725498)- HfCH3(OCH3)[C5H4(CH3)]2

These novel precursors are compatible with a variety of oxidants in ALD growth processes across a wide temperature range, exhibiting self limiting growth up to 400°C.4 Their volatility and thermal stability properties enable easy materials transport from bubblers into conventional deposition tools.

Hafnium and zirconium oxides are leading candidate to replace silicon dioxide as the gate oxide in a variety of semiconductor and energy applications.5 Excellent properties of HfO2 and ZrO2 films make them especially attractive for the gate oxide replacement and as potential insulating dielectrics for capacitive elements in memory devices such as DRAM.6

Please refer to the table below for the Vapor Pressure Curve of each of the Hf and Zr precursors. Additional physical properties are available on the product detail pages.

1. Material Matters, 2008, v.3, No.2
2. Material Matters, 2006, v.1, No.3
3. Atomic Layer Deposition Applications 5., Eds.: S. De Gendt, S. F. Bent, A. Delabie, J. W. Elam, S.B.Kang, O.van der Straten, A. Londergan; The Electrochemical Society, Salem, MA, 2009, 411 p.
4. Heys, P.; Williams, P.; Song, Fuquan. Cyclopentadienyl Type Hafnium and Zirconium Precursors and Use Thereof in Atomic Layer Deposition. WO Patent 2006/131751, June 6, 2006.
5. Wilk, G.D; Wallace, R.M.; Anthony, J.M. J. Appl. Phys. 2001, 89, 5243
6. Gutsche, M.; Seidl, H.; Luetzen, J.; Birner, A.; Hecht, T.; Jakschik, S.; Kerber, M.; Leonhardt, M.; Moll, P.; Pompl, T.; Reisinger, H.; Rongen, S.; Saenger, A.; Schroeder, U.; Sell, B.; Wahl, A.; Schumann, D. In Technical Digest of the International Electron Device Meeting, Washington, DC, Dec 2-5, 2001; 18.6.1.
Figure 1. Schematic of the ALD method based on sequential, self-limiting surface reactions.
Figure 2. Steel cylinder used in atomic layer deposition (ALD) systems.

Product #

Product Name



Add to Cart

663301 13: Aluminium
Trimethylaluminum liquid
688509 14: Silicon
Silicon tetrachloride liquid
759414 14: Silicon
Tetraethyl orthosilicate liquid
697281 14: Silicon
Tris(tert-butoxy)silanol solid
697303 14: Silicon
Tris(tert-pentoxy)silanol liquid
725536 22: Titanium
Tetrakis(diethylamido)titanium(IV) liquid
669008 22: Titanium
Tetrakis(dimethylamido)titanium(IV) liquid
697079 22: Titanium
Titanium tetrachloride liquid
687502 22: Titanium
Titanium(IV) isopropoxide liquid
736007 23: Vanadium
Vanadium(V) oxytriisopropoxide liquid
755753 24: Chromium
Chromium(0) hexacarbonyl  
753076 27: Cobalt
Bis(ethylcyclopentadienyl)cobalt(II) liquid
668729 30: Zinc
Diethylzinc liquid
730726 31: Gallium
Triethylgallium liquid
730734 31: Gallium
Trimethylgallium liquid
702021 39: Yttrium
Tris[N,N-bis(trimethylsilyl)amide]yttrium powder
725471 40: Zirconium
Bis(methyl-η5−cyclopentadienyl)methoxymethylzirconium liquid
669016 40: Zirconium
Tetrakis(dimethylamido)zirconium(IV) solid
725528 40: Zirconium
Tetrakis(ethylmethylamido)zirconium(IV) liquid
759554 40: Zirconium
Zirconium(IV) tert-butoxide liquid
760412 41: Niobium
Niobium(V) ethoxide liquid
751774 41: Niobium
Tris(diethylamido)(tert-butylimido)niobium(V) liquid
754943 42: Molybdenum
Molybdenumhexacarbonyl solid
679798 44: Ruthenium
Bis(ethylcyclopentadienyl)ruthenium(II) liquid
725501 72: Hafnium
Bis(methyl-η5−cyclopentadienyl)dimethylhafnium waxy solid
725498 72: Hafnium
Bis(methyl-η5−cyclopentadienyl)methoxymethylhafnium liquid
760463 72: Hafnium
Hafnium(IV) tert-butoxide liquid
666610 72: Hafnium
Tetrakis(dimethylamido)hafnium(IV) low-melting solid
725544 72: Hafnium
Tetrakis(ethylmethylamido)hafnium(IV) liquid
760404 73: Tantalum
Tantalum(V) ethoxide liquid
668990 73: Tantalum
Tris(diethylamido)(tert-butylimido)tantalum(V) liquid
668885 74: Tungsten
Bis(tert-butylimino)bis(dimethylamino)tungsten(VI) liquid
755737 74: Tungsten
Tungsten hexacarbonyl solid
697540 78: Platinum
Trimethyl(methylcyclopentadienyl)platinum(IV) low-melting solid
760293 Silane
2,4,6,8-Tetramethylcyclotetrasiloxane liquid
759562 Silane
697125 Water
Water liquid