Inorganic Halides for Scintillation

By: Luke Grocholl, Chemfiles Volume 5 Article 13

Luke Grocholl, Ph.D.
Materials Science Team
Sigma-Aldrich Corporation

The 1948 discovery by Hofstadter that sodium iodide doped with thallium exhibits extremely high light-yield and conversion efficiency launched the era of modern radiation spectrometry.1 More than half a century later, inorganic halide salts, particularly when doped, possess some of the best characteristics of all scintillation materials.2 In fact, thallium-doped sodium iodide still exhibits the highest conversion efficiency of any known scintillation material.

back to top

Rare-Earth Halides

Doped lanthanide halides are a promising new class of scintillation crystals. Recent papers35 show that these materials possess not only high light output, but also the proportionality necessary for high-energy resolution. In addition, doped lanthanide halides exhibit fast response times and good g-ray stopping efficiency. High-purity, anhydrous lanthanide halide source materials are expensive and difficult to obtain in the quantities necessary for bulk crystal growth. Sigma-Aldrich holds a unique position as a supplier of ultra-dry rareearth salts in bulk quantities.

Inorganic halide crystals represent the benchmark in scintillator materials. They continue to meet material challenges through active research and development. Essential to the growth of these crystals are ultra-high purity, anhydrous source materials. Proprietary Sigma- Aldrich technology is used to produce beaded materials whose reduced surface area minimizes moisture absorption and allows increased crucible loading, boosting crystal yield. Scrap shards cut from desired crystals can be reprocessed by Sigma-Aldrich to provide pristine materials, thus increasing the economic efficiency of scintillation crystal growth. Precursor materials must also be free of significant amounts of trace radioactive impurities. Sigma‑Aldrich has a center of excellence for high quality source materials, as well as technical knowledge and commitment, necessary to advance your high technology applications.

back to top

Halides



Name Formula MW CAS MP BP Density at 25 °C Cat. No.
Barium fluoride, anhydrous, powder, 99.999% BaF2 175.34 [7787-32-8] 354 °C 2260 °C 4.89 g/mL 449660-10G
449660-50G
Bismuth(III) fluoride, 99.99+% BiF3 265.98 [7787-61-3] 649 °C 900 °C 8.3 g/mL 401528-5G
401528-25G
Calcium fluoride, anhydrous, powder, 99.99% CaF2 78.08 [7789-75-5] 1418 °C 2260 °C 3.18 g/mL 449717-5G
449717-25G
Cerium(III) fluoride, anhydrous, powder, 99.99% CeF3 197.12 [7758-88-5] 1430 °C 2327 °C 6.16 g/mL 229555-2G
229555-10G
229555-50G
Cerium(III) chloride, anhydrous beads, –10 mesh, 99.99+% CeCl3 246.48 [7790-86-5] 848 °C 1730 °C 4.00 g/mL 429406-5G
429406-25G
Cerium(III) bromide, anhydrous, beads, particle size –10 mesh, 99.99% CeBr3 379.85 [14457-87-5] 730–732 °C 1705 °C 5.18 g/mL 563226-5G
563226-25G
Cesium fluoride, 99.99% CsF 151.90 [13400-13-0] 682 °C 1231 °C 4.115 g/mL 255718-10G
255718-50G
Cesium iodide, anhydrous, beads, particle size –10 mesh, 99.999% CsI 259.81 [7789-17-5] 626 °C 1280 °C 4.51 g/mL 429384-1G
429384-10G
Europium(III) fluoride, anhydrous, powder, 99.99% EuF3 208.96 [13765-25-8] 1276 °C 2500 °C   449806-1G
449806-5G
Gadolinium(III) bromide, anhydrous, powder, 99.99% GdBr3 396.98 [13818-75-2] 770 °C   4.6 g/mL 485020-2G
485020-10G
Lanthanum(III) fluoride, anhydrous, powder, 99.99% LaF3 195.91 [13709-38-1] 1493 °C 2327 °C 5.936 g/mL 449857-5G
449857-25G
449857-100G
Lanthanum(III) chloride, anhydrous, beads, particle size –10 mesh, 99.99+% LaCl3 245.27 [10099-58-8] 860 °C 1812 °C 3.84 g/mL 449830-5G
449830-25G
Lanthanum(III) bromide, anhydrous, beads, particle size –10 mesh, 99.99+% LaBr3 378.64 [13536-79-3] 783 °C 2280 °C 5.06 g/mL 449822-2G
449822-10G
Lanthanum(III) iodide, anhydrous, beads, particle size –10 mesh, 99.9% LaI3 519.62 [13813-22-4] 772 °C   5.63 g/mL 413674-1G
413674-5G
Lead(II) iodide, beads, particle size –10 mesh, 99.999% PbI2 461.01 [10101-63-0] 402 °C 2672 °C 6.16 g/mL 554359-5G
554359-25G
Lutetium(III) chloride, anhydrous, powder, 99.99% LuCl3 281.33 [10099-66-8] 279 °C 905 °C 3.98 g/mL 450960-1G
450960-5G
Lutetium(III) bromide, anhydrous, powder, 99.99% LuBr3 414.68 [14456-53-2] 1025 °C 1440 °C   587133-1G
587133-5G
Lutetium(III) iodide, anhydrous, powder, 99.9% LuI3 555.68 [13813-45-1] 1050 °C 1200 °C 5.6 g/mL 460575-1G
460575-5G
Mercury(II) bromide, anhydrous, beads, particle size –10 mesh, 99.999% HgBr2 360.41 [7789-47-1] 236 °C 318 °C 6.05 g/mL 449121-5G
449121-25G
Mercury(II) iodide, anhydrous, beads, particle size –10 mesh, 99.999% HgI2 454.40 [7774-29-0] 259 °C 322 °C 6.21 g/mL 449180-5G
449180-25G
Praseodymium(III) chloride, anhydrous, beads, particle size –10 mesh, 99.99% PrCl3 247.27 [10361-79-2] 786 °C 1710 °C 4.00 g/mL 451215-1G
451215-5G
451215-25G
Praseodymium(III) bromide, anhydrous, powder, 99.99% PrBr3 380.63 [13536-53-3] 693 °C 1547 °C 5.30 g/mL 439703-2G
439703-10G
Sodium iodide, anhydrous, beads, particle size –10 mesh, 99.999% NaI 149.89 [7681-82-5] 661 °C 1304 ºC 3.67 g/mL 439681-5G
439681-25G
Thallium(I) bromide, anhydrous, beads, particle size –10 mesh, 99.999% TlBr 284.28 [7789-40-4] >300 °C 815 °C 7.5 g/mL 336270-10G
336270-50G
Thallium(I) iodide, anhydrous, beads, particle size –10 mesh, 99.999% TlI 331.27 [7790-30-9] 440 °C 824 °C 7.29 g/mL 458813-10G
458813-50G

back to top

Materials

     

References

  1. Hofstadter, R. Phys. Rev. 1948, 74, 100.
  2. Derenzo, S. E. et al. Nuc. Instrum. Methods 2002, 505, 111.
  3. Guillot-Noël, O. et al. J. Lumin. 1999, 85, 21.
  4. van Loef, E. V. D. et al. Appl. Phys. Lett. 2000, 77, 1467.
  5. van Loef, E. V. D. et al. Phys. Res. A 2003, 496, 138.

back to top

Related Links