Attention:

Certain features of Sigma-Aldrich.com will be down for maintenance the evening of Friday August 18th starting at 8:00 pm CDT until Saturday August 19th at 12:01 pm CDT.   Please note that you still have telephone and email access to our local offices. We apologize for any inconvenience.

Helen Blackwell Group – Professor Product Portal

Professor Product Portal Index

Professor Helen E. Blackwell

Our laboratory pursues research at the chemistry-microbiology interface. We are deeply interested in the mechanisms by which bacteria sense each other, their environment, and the eukaryotic hosts on which and in which they may reside. One prominent pathway that we study is called quorum sensing, which allows bacteria to assess their local population density and initiate group behaviors at high cell (or “quorate”) density. This pathway allows, for example, many pathogens to amass in large populations prior to attacking their hosts. Bacteria use chemical signals for quorum sensing, and it is the concentration of these signals in a given environment that alerts the bacteria to their current cell number. We are interested in the structures of these signals and how we can reengineer them to either ablate or amplify quorum-sensing networks. Through synthesis and systematic screening, we have identified critical structural features of these signals and non-native functionality that we can install into the signals to tune their function. Thereby, we have developed non-native molecules that strongly inhibit or activate quorum-sensing pathways and modify infection processes. These compounds represent useful tools to explore the role of quorum sensing in many biological processes. We are applying them to both study fundamental aspects of quorum sensing pathways, and examine different types of infections in animals and plants.

Blackwell group website

For applicable product information, please click below:

For recent articles from the Blackwell Laboratory:

Products available at Aldrich from the Blackwell Laboratory

     

Grant D Geske, Jennifer C O'Neill, David M Miller, Margrith E Mattmann, Helen E Blackwell
Journal of the American Chemical Society 2007-11-07
Bacteria use a language of low molecular weight ligands to assess their population densities in a process called quorum sensing. This chemical signaling process plays a pivotal role both in the pathogenesis of infectious disease and in beneficial symbioses. There is intense interest in the development of synthetic ligands that c...Read More
Danielle M Stacy, Michael A Welsh, Philip N Rather, Helen E Blackwell
ACS Chemical Biology 2012-10-19
Many bacterial pathogens use quorum sensing (QS) to control virulence. As a result, the development of methods to intercept QS has attracted significant interest as a potential anti-infective therapy. Acinetobacter baumannii has emerged as a pan-drug-resistant pathogen and displays a remarkable ability to persist in hospital set...Read More
Michael A Welsh, Nora R Eibergen, Joseph D Moore, Helen E Blackwell
Journal of the American Chemical Society 2015-02-04
The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits-Las, Rhl, and Pqs-to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents ...Read More
Related Links