Atomic Spectroscopy Overview

Schematic of a basic atomic absorption spectrometer composed of a light source, atomizer, monochromator and detector.

Atomic spectroscopy uses the electromagnetic radiation or mass spectrum of a sample to determine elemental composition. The wavelength of energy absorbed or emitted by atoms is characteristic to each element and can be used for element identification and quantification.  

Analytical techniques based on atomic spectroscopy are widely used in environmental chemistry, geology and soil science, mining and metallurgy, food sciences, and medicine.

Featured Categories

A collection of items related to analytical chemistry standards. It includes a bottle with a yellow label and several documents. One document is an accreditation document. Another paper shows printed graphs and text. The background is white and nondescript.
ICP & AAS standards

Enhance inorganic trace analysis with our certified AAS and ICP standards. NIST-traceable solutions available.

Shop Products
A diverse collection of pharmaceutical pills and capsules. They come in various shapes and colors, including pink, yellow, white, blue, and red. Some capsules are clear or opaque with different colored ends.
Inorganic Elemental Impurity Mix Standards

Browse through our selection of reference materials of inorganic elemental impurity mixes as per ICHQ3D guidelines for your ICP or AAS based tests of drug products in pharmaceutical analysis.

Shop Products
Two laboratory chemical bottles against a yellow background. The bottle on the left is larger, with a red cap and a label that includes hazard symbols. The smaller bottle on the right has a black cap and white and green label.

Uncover a wide acid range: Supelco® for analysis, Sigma-Aldrich® for labs, SAFC® for biopharma. Tailor solutions for varied needs.

Shop Products
Three Milli-Q® Benchtop Lab Water Purification Systems. Milli-Q® IQ 7003/05/10/15 Ultrapure and Pure Water Purification System - Type 1 and Type 2 lab water purification system with production and tank units plus pure and ultrapure water dispensers. From left to right, the first two systems have a similar design with a base, an upright structure with a digital display at the top, and an adjustable dispensing arm. The third system is more compact and box-like, without a dispensing arm.
Milli-Q® Benchtop Lab Water Purification Systems

Milli-Q® systems offer innovative water purification technologies engineered to support lab research needs, sustainability goals, and other major requirements.

Shop Products

Atomic absorption spectroscopy (AAS)

Atomic absorption spectroscopy (AAS) works by measuring the amount of UV/visible light energy absorbed by an element. The wavelength of light absorbed corresponds to the energy needed to promote its electrons from the ground state to a higher energy level. The amount of energy absorbed in this excitation process is proportional to the concentration of the element in the sample.

Flame atomic absorption spectroscopy (FAA)

Flame atomic absorption spectroscopy (FAA) involves vaporization and thermal atomization of a liquid sample by a flame. In this technique, a sample solution is aspirated and sprayed as a fine aerosol into a chamber to combine with fuel and oxidant gases. The resulting mixture is then carried to the burner head, where combustion and sample atomization occurs.

Graphite furnace atomic absorption spectroscopy (GFAA)

Graphite furnace atomic absorption spectroscopy (GFAA) is the most advanced and sensitive technique to assess atomic absorption. With a graphite furnace atomizer, the atoms are retained in the optical path for a slightly longer time compared with flame atomization, resulting in lower detection limits and sensitivity in the parts per billion (ppb) range.

Inductively coupled plasma optical emission spectroscopy (ICP-OES)

Inductively coupled plasma optical emission spectroscopy (ICP-OES) measures the light emitted by excited electrons of an element while returning to their stable ground state. The sample is introduced into an argon plasma and high temperature excites the atom’s electrons to higher energy levels. The element is identified by the characteristic wavelength of the light emitted as its electrons return to ground state. The intensity of the light emitted is related to the concentration of the element in the sample.

Inductively coupled plasma-mass spectrometry (ICP-MS)

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry used for the highly sensitive quantification of various metals and non-metals in the concentration range of below 1 part per trillion (ppt). ICP-MS analyzes elements by their separation in a magnetic field as per their mass to charge (m/z) ratio.

X-ray fluorescence (XRF) spectrometry

X-ray fluorescence (XRF) spectrometry detects elemental composition by measuring the wavelength and intensity of X-rays emitted by energized atoms in a sample. In this method, a beam of short wavelength x-rays strikes the sample and dislodges innermost shell electrons of the atom, forming a vacant site or “hole”. This causes the atom to rearrange its electronic arrangement with an electron from a higher energy shell jumping to occupy the newly created vacancy and emitting characteristic X-ray light during the process. The X-rays emitted by the atoms during the process of fluorescence are detected and used for sample identification and quantitation.

Document Search
Looking for More Specific Information?

Visit our document search for data sheets, certificates and technical documentation.

Find Documents

    Sign In To Continue

    To continue reading please sign in or create an account.

    Don't Have An Account?