Skip to Content
Merck
  • In vitro and in vivo toxicological studies of V nerve agents: molecular and stereoselective aspects.

In vitro and in vivo toxicological studies of V nerve agents: molecular and stereoselective aspects.

Toxicology letters (2014-12-03)
Georg Reiter, Susanne Müller, Ira Hill, Kendal Weatherby, Horst Thiermann, Franz Worek, John Mikler
ABSTRACT

In vitro inhibition data of cholinesterases (ChEs) and reactivation with HI 6 are presented for separated VX and VR enantiomers with high purity (enantiomer excess >99.999%). Inhibition rate constants for (-)-VR were fourfold higher than for (-)-VX. Marked higher stereoselectivity of ChEs inhibition was observed for VR compared with VX enantiomers. Low/no reactivation was determined for respective (+)-enantiomers. Results were related to orientation of (-)- and (+)-enantiomers in ChEs active sites. In vivo in swine, absorption rate constants were practically identical for VX and VR enantiomers after percutaneous application of 3xLD₅₀ underlining relevance of amine group and postulated equilibria shifts between charged, uncharged, open and cyclic form (skin depot). In vivo toxicokinetics of VX and VR enantiomers differed markedly after 4h. Elimination of VX was much slower compared with VR. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition in vivo differed for VX and VR. In vivo spontaneous reactivation was not observed for VX-inhibited AChE while VR-inhibited AChE was much faster spontaneously reactivated than expected and AChE inhibition by VR was slower than expected. Progredient BChE inhibition was detected after VX application while VR inhibited BChE weakly. Possible explanation may be impact of the agents on hemodynamics and different metabolisms. Thus, due to increase of the V agents' blood concentration after atropine administration (depot release) the present standard therapy should be thoroughly reconsidered.

MATERIALS
Product Number
Brand
Product Description

USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Sodium, 25-35 wt % dispersion in paraffin
Sigma-Aldrich
Sodium, 99.95% trace metals basis, ingot
Sigma-Aldrich
Sodium, cubes, contains mineral oil, 99.9% trace metals basis
Sigma-Aldrich
Sodium, ACS reagent, dry
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Methanol solution, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis